Journal of Vacuum Science & Technology A, Vol.24, No.5, 1725-1729, 2006
Silicon dioxide etching process for fabrication of micro-optics employing pulse-modulated electron-beam-excited plasma
Silicon dioxide etching process employing a pulse-modulated electron-beam-excited plasma (EBEP) has been developed for a fabrication process of optical micro-electro-mechanical systems (MEMSs). Nonplanar dielectric materials were etched by using self-bias induced by the electron beam generating the plasma. In order to investigate the effect of pulse modulation on electron beam, plasma diagnostics were carried out in the EBEP employing C4F8 gas diluted with Ar gas by using a Langmuir single probe and time resolved optical emission spectroscopy. It was found that the pulse-modulated EBEP has an excellent potential to reduce the plasma-induced thermal damage on a photoresist film on a Substrate to get the uniform etching and the anisotropic SiO2 etching in comparison with the conventional EBEP. The pulse-modulated EBEP enabled us to get the high etch rate of SiO2 of 375 nm/min without any additional bias power supply. Furthermore, the microfabrication on the core area of optical fiber was realized. These results indicate that the pulse-modulated EBEP will be a powerful tool for the application to optical MEMS process. (c) 2006 American Vacuum Society.