Langmuir, Vol.22, No.21, 8800-8806, 2006
Molecular level structures of poly(n-alkylmethacrylate)s with different side chain lengths at the polymer/air and polymer/water interfaces
Sum frequency generation (SFG) vibrational spectroscopy has been successfully applied to study molecular structures of several poly(n-alkyl methacrylate)s (PAMAs) with different side chain lengths at the PAMA/air and PAMA/water interfaces. We have observed that the ester side chains from all PAMAs always dominate the interface, but the orientation information of the methyl end group on the side chains varies, depending on the length of the side chain. The contributions from methylene groups on the side chains have been evaluated, and the surface structures have been related to the surface tension of these polymers. Different water restructuring behaviors have been observed for different PAMAs. This phenomenon and its reversibility are strongly dependent on the glass transition temperature of each polymer, which is influenced by the side chain length. Detailed data fitting and analysis has been discussed.