화학공학소재연구정보센터
Separation Science and Technology, Vol.41, No.13, 2989-3002, 2006
Removal of humic acid using PEI-modified fungal biomass
A modified fungal biomass was prepared through the adsorption of polyethylenimine (PEI) and subsequent crosslinking with glutaraldehyde on the biomass surface. FTIR result verified that the amine groups were introduced on the biomass surface. As a large number of amine groups are present on the biomass surface and can be protonated in solution, the modified biomass was positively charged at pH < 10.3. The modified biomass was used as an adsorbent to remove humic acid in a series of batch adsorption experiments. The amount of humic acid adsorbed on the biosorbent decreased with increasing solution pH, and the electrostatic interaction between the positive protonated amine groups on the biomass surface and the negative carboxyl groups in the humic acid molecules played an important role in humic acid adsorption. The time-dependent sorption of humic acid on the biomass can be described well by the Fickian diffusion model at the initial stage and the pseudo-second-order equation over 10 h. Using the Langmuir adsorption isotherm, the maximum sorption capacity of the modified biomass for humic acid at pH 5 was 96.5 mg/g. The desorption experiments showed that the humic acid loaded biomass could be easily regenerated in a 0.1 M NaOH solution, and the regenerated biomass possessed good adsorption capacity up to the fifth cycle. The PEI-modified biomass with polyamine chains shows the potential for application in water treatment for the removal of humic substances.