Applied Microbiology and Biotechnology, Vol.73, No.4, 850-861, 2006
A novel GH43 alpha-L-arabinofuranosidase from Humicola insolens: mode of action and synergy with GH51 alpha-L-arabinofuranosidases on wheat arabinoxylan
A novel alpha-L-arabinofuranosidase (alpha-AraF) belonging to glycoside hydrolase (GH) family 43 was cloned from Humicola insolens and expressed in Aspergillus oryzae. H-1-NMR analysis revealed that the novel GH43 enzyme selectively hydrolysed (1 -> 3)-alpha-L-arabinofuranosyl residues of doubly substituted xylopyranosyl residues in arabinoxylan and in arabinoxylan-derived oligosaccharides. The optimal activity of the cloned enzyme was at pH 6.7 and 53 degrees C. Two other novel alpha-L-arabinofuranosidases (alpha-AraFs), both belonging to GH family 51, were cloned from H. insolens and from the white-rot basidiomycete Meripilus giganteus. Both GH51 enzymes catalysed removal of (1 -> 2) and (1 -> 3)-alpha-L-arabinofuranosyl residues from singly substituted xylopyranosyls in arabinoxylan; the highest arabinose yields were obtained with the M. giganteus enzyme. Combinations (50:50) of the GH43 alpha-AraF from H. insolens and the GH51 alpha-AraFs from either M. giganteus or H. insolens resulted in a synergistic increase in arabinose release from water-soluble wheat arabinoxylan in extended reactions at pH 6 and 40 degrees C. This synergistic interaction between GH43 and GH51 alpha-AraFs was also evident when a GH43 alpha-AraF from a Bifidobacterium sp. was supplemented in combination with either of the GH51 enzymes. The synergistic effect is presumed to be a result of the GH51 alpha-AraFs being able to catalyse the removal of single-sitting (1 -> 2)-alpha-L-arabinofuranosyls that resulted after the GH43 enzyme had catalysed the removal of (1 -> 3)-alpha-L-arabinofuranosyl residues on doubly substituted xylopyranosyls in the wheat arabinoxylan.
Keywords:arabinoxylan hydrolysis;GH43 alpha-L-arabinofuranosidase;GH51 alpha-L-arabinofuranosidase;synergy;Meripilus giganteus;Humicola insolens