Energy and Buildings, Vol.38, No.12, 1434-1442, 2006
Implementation of a cogenerative district heating: Optimization of a simulation model for the thermal power demand
The district heating set up with a cogeneration system, concurs to attain energetic, economic and ambient benefits. It also provides to citizens a new service. The project strategy is based on the idea of supplying a portion of the necessary thermal power through a combustion alternative engine in cogeneration modality. It's also interesting to modulate the load with auxiliary boilers fed by natural gas. This solution allows to save primary energy, create a centralization of the energy production, which contributes to the problem of polluting emissions, through the decentralization of the sources. The first step to assess the technical-economic feasibility of a district heating system, based on a cogeneration plant, is to underline and to characterize the energetic request of the basin of user. The objective of the present work is to develop a model that yields an esteem of the hourly thermal load for every days of the heating season of a complex user, represented by a single neighbourhood. To do this, the present work proposes a new method of simulation of the daily and hourly thermal load trend, known only the value of the power installed in the thermal plant for every user, the seasonal hours of the burner operation and the timetable of the heating service distribution, more than the external mean daily temperature trend. The results obtained using this model, have been verified with the data of seasonal consumptions, confirming the validity of the proposed methodology. The above allows to determine, with more precision, the thermal request peak to satisfy, taking in consideration the contemporaneity of the loads, also of different typology, and to carry out a better sizing of the generation plant. (C) 2006 Elsevier B.V. All rights reserved.