Journal of Applied Polymer Science, Vol.102, No.6, 5292-5296, 2006
Improving rheological property of polymer melt via low frequency melt vibration
A pulse pressure was superimposed on the melt flow in extrusion, called vibration extrusion. A die (L/D = 17.5) was attached to this device to study the rheological properties of an amorphous polymer (ABS) and semicrystalline polymer (PP, HDPE), prepared in the vibration field, and the conventional extrusion were studied for comparison. Results show that the melt vibration technique is an effective processing tool for improving the polymer melt flow behavior for both crystalline and amorphous polymers. The enhanced melt rheological property is also explained in terms of shear thinning criteria. Increasing with vibration frequency, extruded at constant vibration pressure amplitude, the viscosity decreases sharply, and so does when increasing vibration pressure amplitude at a constant vibrational frequency. The effect of vibrational field on melt rheological behavior depends greatly on the melt temperature, and the great decrease in viscosity is obtained at low temperature. (c) 2006 Wiley Periodicals, Inc.