화학공학소재연구정보센터
Journal of Materials Science, Vol.41, No.22, 7406-7412, 2006
Organoclay effect on transverse compressive strength of glass/epoxy nanocomposites
This research focuses on the fabrication of glass fiber/epoxy nanocomposites containing organoclay as well as understanding the organoclay effect on the transverse compressive strength of nanocomposites. To demonstrate the organoclay effect, three different loadings of organoclay were dispersed, respectively, in the epoxy resin using a mechanical mixer followed by sonication. The corresponding glass/epoxy nanocomposites were produced by impregnating dry glass fiber with organoclay epoxy compound through a vacuum hand lay-up procedure. Unidirectional block specimens were employed for transverse compression tests on a hydraulic MTS machine. Experimental observations indicate that glass/epoxy nanocomposites containing organoclay exhibit higher transverse compressive strength than conventional composites. Furthermore, the failure mechanisms for all tested specimens were found to be fiber and matrix debonding. Therefore, results indicate that the increasing characteristic in transverse failure stress may be ascribed to the enhanced fiber/matrix adhesion modified by the organoclay.