Journal of Physical Chemistry B, Vol.110, No.41, 20246-20253, 2006
Balance of hydrophobic and electrostatic forces in the pH response of weak polyelectrolyte capsules
A detailed study of the role of solution pH and ionic strength on the swelling behavior of capsules composed of the weak polyelectrolytes poly(4-vinylpyridine) (P4VP) and poly(methacrylic acid) (PMA) with different numbers of layers was carried out. The polyelectrolyte layers were assembled onto silicon oxide particles and multilayer formation was followed zeta-potential measurements. Hollow capsules were investigated by scanning electron microscopy and atomic force microscopy. The pH-dependent behavior of P4VP/PMA capsules was probed in aqueous media using confocal laser scanning microscopy. All systems exhibited a pronounced swelling at the edges of stability, at pHs of 2 and 8.1. The swelling degree increased when more polymer material was adsorbed. The swollen state can be attributed to uncompensated positive and negative charges within the multilayers, and it is stabilized by counteracting hydrophobic interactions. The swelling was related to the electrostatic interactions by infrared spectroscopy and zeta-potential measurements. The stability of the capsules as well as the swelling degree at a given pH could be tuned, when the ionic strength of the medium was altered.