Journal of Physical Chemistry B, Vol.110, No.42, 21092-21100, 2006
Effect of deposited bismuth on the potential of maximum entropy of Pt(111) single-crystal electrodes
The effect of bismuth adsorption on the entropy of formation of the double layer on Pt(111) electrodes has been studied with the laser-induced temperature jump method. The coulostatic response to the temperature change induced by pulsed laser illumination allows the estimation of the sign and magnitude of the thermal coefficient of the potential drop at the interphase. This is related to the entropy of formation of the double layer, and the particular potential where this thermal coefficient becomes zero can be identified with the potential of maximum entropy of double-layer formation (pme). The effect of bismuth adsorption on the pme depends on the adatom coverage. At high coverages, a marked decrease of the pme is observed. This trend follows the change of the potential of zero charge expected from work function measurements, and it is likely due to the change in the orientation of solvent molecules induced by surface dipoles originated between the adatom and the substrate. At low coverage, the pme increases with the bismuth coverage. The disruption of the water structure due to the presence of the bismuth adatoms is tentatively proposed as the most likely explanation for this behavior.