Journal of Physical Chemistry B, Vol.110, No.45, 22323-22327, 2006
Monitoring gold nanorod synthesis by localized surface plasmon resonance
Surfactants can direct the growth of gold nanoparticles to create anisotropic structures in high yield by simple means, yet the exact roles of surfactants and other reactants are not entirely understood. Here we show that one can exploit the geometrical dependence of the localized surface plasmon resonant extinction spectrum of gold nanorods to monitor their synthesis kinetics. By using quantitative measurements of nanorod extinction cross sections, Gans' theory for the spectral extinction of prolate spheroids can be normalized to provide values for the nanorod length and diameter from extinction spectra measured during growth. The nanorod length growth rate was first observed at 0.15 nm/s and decayed during the growth reaction. The rate dependence on nanorod size did not correspond to any simple reaction-limited or diffusion-limited growth mechanisms.