화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.110, No.45, 22601-22607, 2006
Dynamics of CO in mesoporous silica monitored by time-resolved step-scan and rapid-scan FT-IR spectroscopy
Carbon monoxide molecules generated in the channels of mesoporous MCM-41 silica sieve from a precursor (diphenyl cyclopropenone) by photodissociation with a nanosecond laser pulse were monitored by time-resolved Fourier transform infrared (FTIR) spectroscopy using the step-scan and rapid-scan methods. A very broad absorption of CO is observed in the region 2200-2080 cm(-1) at room temperature that decays in a biphasic mode. Two-thirds of the band intensity decays on the hundreds of microsecond scale (lifetime 344 +/- 70 mu s). The process represents the escape of the molecules through the mesopores into the surrounding gas phase, and a diffusion constant of 1.5 x 10(-9) m(2)/s is derived (assuming control by intra-MCM-41 particle diffusion). The broad profile of the absorption is attributed to contact of the random hopping CO with siloxane and silanol groups of the pore surface. Measurements using MCM-41 with the silanols partially capped by trimethyl silyl groups gave further insight into the nature of the IR band profile. These are the first observations on the diffusion behavior of carbon monoxide in a mesoporous material at room temperature. The residual carbon monoxide remains much longer in the pores and features distinct peaks at 2167 and 2105 cm(-1) characteristic for CO adsorbed on SiOH groups C end on and O end on, respectively. The bands decrease with time constants of 113 +/- 3 ms (2167 cm(-1)) and 155 +/- 15 ms (2105 cm(-1)) suggesting that CO in these sites is additionally trapped by surrounding diphenyl acetylene coproduct and/or precursor molecules.