화학공학소재연구정보센터
Journal of Polymer Science Part A: Polymer Chemistry, Vol.44, No.23, 6782-6789, 2006
Synthesis and MALDI-TOF analysis of dendritic-linear block copolymers of lactides: Influence of architecture on stereocomplexation
Formation of a stereocomplex from polylactide copolymers can be tuned by changing the size and the chain topology of the second block in the copolymer. In particular, the use of a dendritic instead of linear architecture is expected to destabilize the cocrystallisation of polylactide blocks. With this idea in mind, dendritic-linear block copolymers were synthesized by ring-opening polymerization (ROP) of lactides using benzyl alcohol dendrons of generation 1-3 as macroinitiators and stannous octoate as catalyst. Polymers with controlled and narrow molar mass distribution were obtained. The MALDI-TOF mass spectra of these dendritic-linear block copolymers show well-resolved signals. Remarkably, 10% or less of odd-membered polymers are present, indicating that ester-exchange reactions which occur classically parallel to the polymerization process, were in these conditions, very limited. Thermal analysis of polyenantiomers of generation 1-3 and the corresponding blends were examined. The blend of a pair of enantiomeric dendritic-linear block copolymers exhibit a higher melting temperature than each copolymer, characteristic for the formation of a stereocomplex. Melting temperatures are strongly dependent on the dendron generation. (c) 2006 Wiley Periodicals, Inc.