Journal of Power Sources, Vol.161, No.2, 1030-1040, 2006
Effect of inlet flow maldistribution on the thermal and electrical performance of a molten carbonate fuel cell unit
This study investigates the temperature and current density distributions in a molten carbonate fuel cell unit when the inlet flows of the anode gas and the cathode gas are mal-distributed in eight patterns. The two-dimensional simultaneous partial differential equations of mass, energy and electrochemistry are solved numerically. The results indicate that the maldistribution of anode and cathode gases dominates the current density field and the cell temperature field, respectively. Moreover, the non-uniform inlet flow slightly affects the mean temperature and mean current density, but worsens the distribution of temperature and current density for most maldistribution patterns. According to the results, the variations of the cell temperature in Pattern G and the current density in Pattern D are 12% and 37% greater than those in the uniform pattern when the deviation of the non-uniform profile is 0.25. Consequently, the effect of non-uniform inlet flow on the temperature and current density distribution on the cell plane is evident, and cannot be neglected. (c) 2006 Elsevier B.V. All rights reserved.