화학공학소재연구정보센터
Journal of Power Sources, Vol.162, No.1, 66-73, 2006
Structure of Pt/C and PtRu/C catalytic layers prepared by plasma sputtering and electric performance in direct methanol fuel cells (DMFC)
Plasma sputtering process was used to deposit Pt and PtRu on conductive carbon diffusion layer. Low metal loading catalysts for methanol electrooxidation were prepared and characterized by TEM and XRD. The main result is that codeposition of Pt and Ru leads to alloy phase, whereas multi-layers deposition leads to no-alloyed structure. The electrochemical performance of sputtered Pt/C electrodes was compared with that of standard electrodes, and was found lower. However, the specific activity was much higher, indicating that the catalyst utilization efficiency was higher than that obtained with a standard electrode. Then, different bimetallic PtRu/C electrodes were prepared by plasma sputtering, leading to different catalyst structures (Pt and Ru multilayer deposition or simultaneous deposition of Pt and Ru) and composition (from 100:0 to 50:50 Pt/Ru atomic ratios). At last, the different PtRu electrodes were compared in term of DMFC electrical performance. The best efficiency of the DMFC was reached when both metals Pt and Ru are simultaneously deposited (alloyed) with a ruthenium atomic ratio of 30% or 40 % Ru depending of the working potentials of the cell. (c) 2006 Elsevier B.V. All rights reserved.