화학공학소재연구정보센터
Korea-Australia Rheology Journal, Vol.18, No.4, 171-181, December, 2006
Toward the computational rheometry of filled polymeric fluids
E-mail:
We present a short review for authors' previous work on direct numerical simulations for inertialess hard particle suspensions formulated either with a Newtonian fluid or with viscoelastic polymeric fluids to understand the microstructural evolution and the bulk material behavior. We employ two well-defined bi-periodic domain concepts such that a single cell problem with a small number of particles may represent a large number of repeated structures: one is the sliding bi-periodic frame for simple shear flow and the other is the extensional bi-periodic frame for planar elongational flow. For implicit treatment of hydrodynamic interaction between particle and fluid, we use the finite-element/fictitious-domain method similar to the distributed Lagrangian multiplier (DLM) method together with the rigid ring description. The bi-periodic boundary conditions can be effectively incorportated as constraint equations and implemented by Lagrangian multipliers. The bulk stress can be evaluated by simple boundary integrals of stresslets on the particle boundary in such formulations. Some 2-D example results are presented to show effects of the solid fraction and the particle configuration on the shear and elongational viscosity along with the micro-structural evolution for both particles and fluid. Effects of the fluid elasticity has been also presented.
  1. Baaijens FPT, J. Non-Newton. Fluid Mech., 79(2-3), 361 (1998)
  2. Batchelor GK, J. Fluid Mech., 41, 545 (1970)
  3. Brady JF, Int. J. Multiph. Flow, 10, 113 (1984)
  4. Chung HT, Kang SH, Hwang WR, Korea-Aust. Rheol. J., 17(4), 171 (2005)
  5. Fortin M, Fortin A, J. Non-Newton. Fluid Mech., 32, 295 (1989)
  6. Glowinski R, Pan TW, Hesla TI, Joseph DD, Int. J. Multiph. Flow, 25, 755 (1999)
  7. GUENETTE R, FORTIN M, J. Non-Newton. Fluid Mech., 60(1), 27 (1995)
  8. Heyes DM, Chem. Phys., 98, 15 (1985)
  9. Hwang WR, Hulsen MA, Meijer HEH, J. Comput. Phys., 194, 742 (2004)
  10. Hwang WR, Hulsen MA, Meijer HEH, J. Non-Newton. Fluid Mech., 121(1), 15 (2004)
  11. Hwang WR, Hulsen MA, Meijer HEH, Kwon TH, Direct numerical simulations of suspensions of spherical particles in a viscoelastic fluid in sliding tri-periodic domains, Proceedings of the XIVth International Congress on Rheology August 22-27, 2004; Editors: J.W. Lee and S.J. Lee, Seoul, Korea, CR10-1 to CR10-3. (2004)
  12. Hwang WR, Anderson PD, Hulsen MA, Chaotic advection in a cavity flow with rigid particles, Phys. Fluids 17, 043602-1--043602-12 (2005)
  13. Hwang WR, Hulsen MA, J. Non-Newton. Fluid Mech., 136(2-3), 167 (2006)
  14. Kraynik AM, Reinelt DA, Int. J. Multiph. Flow, 18, 1045 (1992)
  15. Lees A, Edwards SF, J. Phys. C: Solid State Phys., 5, 1921 (1972) 
  16. Mall-Gleissle SE, Gleissle W, McKinley GH, Buggisch H, Rheol. Acta, 41(1-2), 61 (2002)
  17. Ohl N, Gleissle W, J. Rheol., 37, 381 (1993)
  18. Patankar NA, Singh P, Joseph DD, Glowinski R, Pan TW, Int. J. Multiph. Flow, 26, 1509 (2000)
  19. Patankar NA, Hu HH, J. Non-Newton. Fluid Mech., 96(3), 427 (2001)
  20. Schrauwen BAG, Govaert LE, Peters GWM, Meijer HEH, Macromol. Symp., 185, 89 (2002)
  21. Seshaijer P, Suri M, Comput. Meth. Appl. Mech. Eng., 189, 1011 (2000)
  22. Sierou A, Brady JF, J. Rheol., 46(5), 1031 (2002)
  23. Tanaka H, White JL, Polym. Eng. Sci., 20, 949 (1980)
  24. Vermant J, Solomon MJ, J. Phys. Condens. Matter, 17, R187 (2005)
  25. Yu ZS, Phan-Thien N, Fan YR, Tanner RI, J. Non-Newton. Fluid Mech., 104(2-3), 87 (2002)