화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.24, No.1, 1-10, January, 2007
Prediction of thermal conductivities of oxygen, nitrogen and carbon dioxide at the moderate density regime via semi-empirical assessment
E-mail:
Thermal conductivities coefficients for gaseous state of N2, O2 and CO2 at zero density are determined by the inversion technique. The Lennard-Jones 12-6 (LJ 12-6) potential energy function is used as the initial model potential required by the technique. The Wang Chang-Uhlenbeck-de Boer (WCUB) approach of the kinetic theory of gases has been used for calculating the contribution of molecular degree of freedom to the thermal conductivity of N2, O2 and CO2. Also, the initial density dependence of gaseous thermal conductivity according to the Rainwater-Friend theory, which was given by Najafi et al., has been considered for N2, O2 and CO2.
  1. An J, Kim H, Korean J. Chem. Eng., 22(1), 103 (2005)
  2. Amoros A, Maseo MJ, Villar E, Int. J. Thermophys., 13, 907 (1992)
  3. Austin JW, Dominick P, Smith EB, Tindell AR, Wells BH, Mol. Phys., 52, 1393 (1984)
  4. Bae SY, Cho DH, Kim HT, Kumazawa H, Korean J. Chem. Eng., 11(2), 127 (1994)
  5. Bae SY, Kim HT, Kumazawa H, Korean J. Chem. Eng., 11(3), 211 (1994)
  6. Barker JA, Fock W, Smith F, Phys. Fluids, 7, 897 (1964)
  7. Bich E, Vogel E, “Initial density dependence of transport properties” in Transport Properties of Fluids (Their Correlation, Prediction and Estimations), Edited by J. Millat, J. H. Dymond and C. A. Nieto de Castro, Cambridge University Press, Cambridge, Sec. 5.2, 72 (1996)
  8. Bird BR, Stewart WE, Lightfoot EN, Transport phenomena, Wiley International Edition, New York, Chapter 8 (1960)
  9. Boushehri A, Bzowski J, Kestin J, Mason EA, J. Phys. Chem. Ref Data, 16, 445 (1987)
  10. Bogolubov GNN, in Studies in statistical mechanics, vol. 7, Edited by J. de Boer and G. E. Uhlenbeck, North-Holland, Amsterdam, 5 (1962)
  11. Brush SG, The kinetic theory of gases, Vol. 1, Imperial College Press, Oxford (2003)
  12. Buchnan JL, Turner PR, Numerical methods and analysis, McGraw-Hill, New York, 471 (1992)
  13. Bzowski J, Kestin J, Mason EA, Uribe FJ, J. Phys. Chem. Ref Data, 19, 1179 (1990)
  14. Choh ST, Uhlenbeck GE, The kinetic theory of phenomena in dense gases, University of Michigan, Michigan (1958)
  15. Clenshaw CW, Curtis AR, Numer. Meth., 2, 197 (1960)
  16. Conte SD, de Boor C, Elementary numerical analysis, third Edition, Mc Graw Hill, New York, 303 (1980)
  17. Cohen EGD, in Statistical mechanics of equilibrium and non-equilibrium processes, Edited by J. Meixner, North-Holland, Amsterdam, 140 (1965)
  18. Cumming PT, Evans DJ, Ind. Eng. Chem. Res., 31, 1237 (1992)
  19. Dorn WS, Mc Cracken DD, Numerical methods with fortran IV case studies, John-Wiley, New York, 244 (1972)
  20. Nasrabad AE, Deiters UK, J. Chem. Phys., 119(2), 947 (2003)
  21. Nasrabad AE, Laghaei R, Deiters UK, J. Chem. Phys., 121(13), 6423 (2004)
  22. Nasrabad AE, Laghaei R, Eu BC, J. Phys. Chem. B, 109(16), 8171 (2005)
  23. Eskandari Nasrabad A, Laghaei R, Eu BC, J. Chem. Phys., 124, 84506 (2006)
  24. Erpenbeck JJ, Physica, 118A, 144 (1983)
  25. Ghayeb Y, Najafi B, Moeini V, Parsafar GA, High Temp.-High Press., 35, 217 (2003)
  26. Haghighi B, Fathabadi M, Papari MM, Fluid Phase Equilib., 203(1-2), 205 (2002)
  27. Hill TL, An introduction to statistical thermodynamics, Wiley, New York (1960)
  28. Hill TL, Thermodynamics of small systems, Wiley, New York (1960)
  29. Hirschfelder JO, Curtis CF, Bird RB, Molecular theory of gases and liquids, John-Wiley, New York, Chapter 7 (1964)
  30. Hornbeck RW, Numerical methods, Prentice-Hall, New Jersey, 293 (1975)
  31. Hussaindokht MR, Haghighi B, Bozorgmehr MR, Korean J. Chem. Eng., “A comparison among three equation of state in predicting the solubility of some solids in super critical carbon dioxide,” Korean J. Chem. Eng., (2006) Accepted for publication (2006)
  32. Jang JG, Park HB, Lee YM, Korean J. Chem. Eng., 20(2), 375 (2003)
  33. Kang SP, Lee H, Lee YW, Lee YY, Korean J. Chem. Eng., 12(5), 535 (1995)
  34. Kang SY, Sangani AA, Korean J. Chem. Eng., 19(3), 363 (2002)
  35. Kirkwood JG, Oppenheim I, Chemical thermodynamics, Wiley, New York (1960)
  36. Kwon YJ, Lee JY, Kim KC, Korean J. Chem. Eng., 14(3), 184 (1997)
  37. Kwon YJ, Lee WG, Korean J. Chem. Eng., 22(3), 452 (2005)
  38. Neufeld PD, Aziz RA, Comput. Phys. Commun., 3, 269 (1972)
  39. Laesecke A, Krauss R, Stephan K, Wagner W, J. Phys. Chem. Ref Data, 19, 1089 (1990)
  40. Laghaei R, Nasrabad AE, Eu BC, J. Phys. Chem. B, 109(12), 5873 (2005)
  41. Laghaei R, Nasrabad AE, Eu BC, J. Phys. Chem. B, 109(45), 21375 (2005)
  42. Laghaei R, Eskandari Nasrabad A, Eu BC, J. Chem. Phys., 123, 234507 (2005)
  43. Laghaei R, Eskandari Nasrabad A, Eu BC, J. Chem. Phys., 124, 154502 (2006)
  44. Maghari A, Yeganegi S, J. Phys. Soc. Jpn., 70, 3261 (2000)
  45. Maghari A, Yeganegi S, J. Phys. Soc. Jpn., 69, 1389 (2000)
  46. Mason EA, Uribe FJ, “The corresponding-states principle: Dilute gases,” in Transport Properties of Fluids (Their Prediction, Estimation and Correlations), Edited by Millat J., Dymond J. H., Nieto de Castro C.A., Cambridge University Press, Cambridge, 250 (1996)
  47. Mc Quarrie DA, Statistical mechanics, Harper & Row, New York (1973)
  48. Maitland GC, Vesovic V, Wakeham WA, 8th Proc. Symp. Thermophys. Prop.(1), 184 (1982)
  49. Maitland GC, Vesovic V, Wakeham WA, Mol. Phys., 54, 301 (1985)
  50. Maitland GC, Mustafa M, Vesovic V, Wakeham WA, Mol. Phys., 57, 1015 (1986)
  51. McCourt FRW, “Status of kinetic theory,” in Status and Future Developments in the Study of Transport Properties, W.A. Wakeham, A. S. Dickinson, F. R.W. McCourt, V. Vesovic (Eds.), NATO ASI, Kluwer, New York, 117 (1992)
  52. Millat J, Mustafa M, Ross M, Wakeham WA, Zalaf M, Physica A, 145, 461 (1987)
  53. Monchick L, Mason EA, J. Chem. Phys., 35, 1676 (1961)
  54. Mourtis FM, Rummens FHA, Can. J. Chem., 55, 3007 (1977)
  55. Chapman S, Cowling TG, The mathematical theory of non-uniform gases, Third Edition, Cambridge University Press, Cambridge (1964)
  56. Najafi B, Mason EA, Kestin J, Physica A, 119A, 387 (1983)
  57. O’Hara H, Smith FJ, J. Comput. Phys., 5, 328 (1970)
  58. O’Hara H, Smith FJ, Comput. Phys. Commun., 2, 47 (1971)
  59. Oh SK, Sim CH, Korean J. Chem. Eng., 19(5), 843 (2002)
  60. Oh SK, Park KH, Korean J. Chem. Eng., 22(2), 268 (2005)
  61. Oh SK, Korean J. Chem. Eng., 22(6), 949 (2005)
  62. Oh ES, Korean J. Chem. Eng., 21(2), 494 (2004)
  63. Pachmer J, Handbook of numerical analysis in application, Mc Graw Hill, New York, pp. 140-142 and pp. 136-137 (1984)
  64. Press WH, Teukolsky SA, Vetterling WT, Flannery BP, Numerical recipes in FORTRAN: The art of scientific computing, Second Edition, Cambridge University Press, Cambridge (1994)
  65. Rigby M, Smith EB, Wakeham WA, Maitland GC, The forces between molecules, Clarendon, Oxford (1992)
  66. Shin GS, Park JS, Kwon YJ, Korean J. Chem. Eng., 15(6), 603 (1998)
  67. Smith IM, Programming in FORTRAN 90: A first course for engineers and scientists, John-Wiley (1995)
  68. Smith EB, “The determination of intermolecular forces by data-inversion methods,” in Structure and dynamic of weakly bonded molecular complexes, NATO ASI Series, Ser. C, 212, Kluwer, New York, 373 (1987)
  69. Smith EB, Tindell AR, Wells BH, High Temp.-High Press., 17, 53 (1985)
  70. Stephan K, Krauss R, Laesecke A, J. Phys. Chem. Ref Data, 16, 993 (1987)
  71. Taxman N, Phys. Rev., 110, 1235 (1958)
  72. Tolman RC, The principles of statistical mechanics, Dover edition, New York (1979)
  73. Maitland GC, Vesovic V, Wakeham WA, Mol. Phys., 54, 287 (1985)
  74. Trusler JPM, Sci. Prog., 75, 51 (1991)
  75. Vasserman AA, Khasilev PI, High Temp.-High Press., 24, 475 (1992)
  76. Vesovic V, Wakeham WA, Mol. Phys., 62, 1239 (1987)
  77. Wakeham WA, “Traditional transport properties,” in Status and Future Developments in the Study of Transport Properties, W.A. Wakeham, A. S. Dickinson, F. R.W. McCourt, V. Vesovic (Eds.), NATO ASI, Kluwer, New York, 29 (1992)
  78. Wang Chang CS, Uhlenbeck GE, de Boer J, “The heat conductivity and viscosity of polyatomic gases,” in Studies in statistical mechanics, Edited by J. de Boer and G. E. Uhlenbeck,vol. 2, North-Holland, Amsterdam (1964)
  79. Wang Chang CS, Uhlenbeck GE, de Boer J, “The heat conductivity and viscosity of polyatomic gases,” in Studies in Statistical mechanics, Edited by J. de Boer and G. E. Uhlenbeck, vol. 2, North-Holland, Amsterdam (1964)
  80. Xiufeng L, Xi L, Int. J. Theor. Phys., 35, 1753 (1996)
  81. Yoo KP, Kim H, Lee CS, Korean J. Chem. Eng., 12(3), 277 (1995)
  82. Yoo KP, Kim H, Lee CS, Korean J. Chem. Eng., 12(3), 289 (1995)