화학공학소재연구정보센터
Clean Technology, Vol.12, No.4, 198-204, December, 2006
반응압출법에 의해 개질된 폴리카프로락톤의 물성에 관한 연구
Properties of Polycaprolactone Modified by Reaction Extrusion
E-mail:
초록
생분해성 고분자인 폴리카프로락톤을 반응개시제를 첨가하여 반응압출법으로 개질시켰다. 개시제의 함량은 중량 백분율로 0.1, 0.3, 0.5 그리고 1.0% 이었고 이축압출기의 온도는 130~180℃로 운전하였다. 개질된 폴리카프로락톤에 대한 열분석, 분자량 분석, 기계적 강도 측정, 유변학적 특성 및 생분해도 연구를 수행하였다. 개질된 폴리카프로락톤은 순수 폴리카프로락톤과 비교하여 여러 물성에서 차이를 보였다. 개시제 1% 개질 폴리카프로락톤은 약 20%의 결정화도 감소, 약 50%의 인장탄성률 상승을 보였고, 복합점도, 유변학적 특성인 저장탄성률 및 손실탄성률의 큰 증가를 보여주었다. 0.1%의 가장 적은 개시제로 개질된 폴리카프로락톤의 생분해도는 순수 폴리카프로락톤과 비슷한 생분해도를 보였으나, 나머지는 생분해도가 증가하였다.
The modification of biodegradable polycaprolactone was accomplished by reactive extrusion with various contents of free radical initiator. Reaction conditions were in the temperature range of 130℃ to 18℃ with initiator contents of 0.1, 0.3, 0.5 and 1.0 wt%. To characterize the modified polycaprolactone (PCL), molecular weight was measured by gel permeation chromatography(GPC) and thermal, mehanical and rheological properties as well as biodegradability were measured. the modified PCL (MPCL) with 1% of initiator showed ca. 20% increase in crystallinity and ca. 50% increase in tensile modulus. Also, a large increase in rheological properties such as complex viscosity, storage and loss modulus was observed. The biodegradability of most MPCL was higher than that of virgin PCL.
  1. Narayan R, "Biodegradable Plastics," in Opportunities for Innovation: Biotechnology, National Institute for Standards and Technology, (September, 1993), pp. 135-149. (1993)
  2. Narayan R, Krishnan M, Dubois P, "Polysaccharides Grafted with Aliphatic Polyesters Derived from Cyclic Esters", U.S. Patent 5,540,929, (1996)
  3. Dubois P, Narayan R, Macromol. Symp., 198, 233 (2003)
  4. Darwis D, Mitomo H, Enjoji T, Yoshii F, Makuuchi K, J. Appl. Polym. Sci., 68(4), 581 (1998)
  5. Raquez JM, Degee P, Narayan R, Dubois P, Macromolecules, 34(24), 8419 (2001)
  6. Krishnan M, "Engineering of Compositions Based on Star-Polycaprolactone", Ph.D. Theses, Michigan State University, Michigan (1998)
  7. Darwis D, Nishimura K, Mitomo H, Yoshii F, J. Appl. Polym. Sci., 74(7), 1815 (1999)
  8. Yoshi F, Darwis D, Mitimo H, Makuuchi K, Radiat. Phys. Chem., 57, 417 (2000)
  9. Yoshi F, Suhartyin M, Nagasawa N, Mitomo H, Kume T, Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 208, 30 (2003)
  10. Sugimoto M, Tanaka T, Masubuchi Y, Takimoto J, Koyama K, J. Appl. Polym. Sci., 73(8), 1493 (1999)
  11. Carlson D, Dubois P, Nie L, Narayan R, Polym. Eng. Sci., 38(2), 311 (1998)
  12. Chodak I, Lazar M, J. Appl. Polym. Sci., 32, 5431 (1986)
  13. Kim DJ, Kang HJ, Seo KH, J. Appl. Polym. Sci., 81(3), 637 (2001)
  14. Kim DJ, Kim WS, Lee DH, Min KE, Park LS, Kang IK, Jeon IR, Seo KH, J. Appl. Polym. Sci., 81(5), 1115 (2001)
  15. Hogt AH, Meijer J, Jelenic J, "Modification of Polypropylene by Organic Peroxides", in Al-Malaika, S., Ed., Reactive Modifiers for Polymers, Blakie Academic & Professional, London, 84-132 (1996)
  16. ISO 14855, Evaluation of the Ultimate Aerobic Biodegradability and Disintegration of Plastics under Controlled Composting Conditions-Method by Analysis of Released Carbon Dioxide (1997)
  17. Krevelen DW, Properties of Polymers, Elsevier Science, New York, 1990, Chapter 19 (1990)
  18. Yang HH, Han CD, Kim JK, Polymer, 35(7), 1503 (1994)
  19. Alvarez VA, Terenzi A, Kenny JM, Vazquez A, Polym. Eng. Sci., 44(10), 1907 (2004)
  20. Han CD, Jhon Ms, J. Appl. Polym. Sci., 32, 3809 (1986)
  21. Huang RT, The Practical Handbook of Compost Engineering, Lewis Publishers, Florida, 1993, Chapter1 (1993)
  22. Snook JB, "Biodegradility of Polylactide Film in simulated Composting Environments", M.S. Thesis, Michigan State University, Michigan (1994)