Journal of the Korean Industrial and Engineering Chemistry, Vol.18, No.1, 24-28, February, 2007
Cl2/Ar 플라즈마를 이용한 ZnO 박막의 식각 특성
Etch Characteristics of Zinc Oxide Thin Films in a Cl2/Ar Plasma
E-mail:
초록
Cl2/Ar 가스의 고밀도 플라즈마를 이용하여 ZnO 박막에 대한 식각이 연구되었다. Cl2 가스의 농도, coil rf power, dc-bias 전압, 그리고 공정 압력을 변화시켜서 ZnO 박막의 식각특성을 체계적으로 조사하였다. Cl2 가스의 농도가 증가할수록 ZnO 박막의 식각 속도는 증가하였고, 식각된 패턴 주변의 재증착은 감소되었지만 식각된 패턴의 측면 경사는 낮아졌다. Coil rf power와 dc-bias 전압이 증가할수록 ZnO 박막의 식각 속도가 증가하였고, 식각 프로파일이 개선되었다. 공정 압력이 증가 할수록 ZnO 박막의 식각 속도가 미세하게 증가하였으나 식각 프로파일의 변화는 관찰되지 않았다. 이러한 결과들을 토대로 하여 ZnO 박막의 최적의 식각 조건이 설정되었다. 재증착이나 잔류물이 없이 대략 75°~80°의 높은 이방성 식각을 갖는 ZnO 박막의 식각이 20% Cl2 가스의 농도, 1000 W의 coil rf power, 400 V의 dc-bias 전압, 그리고 5 mTorr의 공정 압력에서 성공적으로 이루어졌다.
The etching of zinc oxide (ZnO) thin films has been studied using a high density plasma in a Cl2/Ar gas. The etch characteristics of ZnO thin films were systematically investigated on varying Cl2 concentration, coil rf power, dc-bias voltage, and gas pressure. With increasing Cl2 concentration, the etch rate of ZnO thin film increased, the redeposition around the etched patterns decreased but the sidewall slope of the etched patterns slanted. As the coil rf power and dc-bias voltage increased, the etch rates of ZnO thin films increased and etch profiles of ZnO thin films were improved. With increasing gas pressure, the etch rate of ZnO thin films slightly increased but little change in etch profile was observed. Based on these results, the optimal etching conditions of ZnO thin film were selected. Finally, the etching of ZnO thin films with a high degree of anisotropy of approximately 75°∼80° without the redepositions and residues was successfully achieved at the etching conditions of 20% Cl2 concentration, coil rf power of 1000 W, dc-bias voltage of 400 V, and gas pressure of 5 mTorr.
- Lee JM, Kim KK, Park SJ, Choi WK, Appl. Phys. Lett., 78, 3842 (2001)
- Park JS, Park HJ, Hahn YB, Yi GC, Yoshikawa A, J. Vac. Sci. Technol. B, 21(2), 800 (2003)
- Lee JM, Chang KM, Kim KK, Choi WK, Park SJ, J. Electrochem. Soc., 148(1), G1 (2001)
- Ip K, Baik KH, Overberg ME, Lanbers ES, Heo YW, Norton DP, Ren F, Zavada JM, Appl. Phys. Lett., 81, 3546 (2002)
- Ip K, Overberg ME, Biak KW, Wilson RG, Kucheyev SO, Williams JS, Jagadish C, Ren F, Heo YW, Norton DP, Zavada ZM, Pearton SJ, Solid-state Electronics, 47, 2289 (2003)
- Groenen R, Creatore M, van de Sanden MCM, Appl. Surf. Sci., 241, 321 (2005)
- Na SW, Shin MH, Chung YM, Han JG, Jeung SH, Boo JH, Lee NE, Microelectron. Eng., 83, 328 (2006)
- Volintiru I, Creatore M, Linden JL, van de Sanden MCM, Superlattices Microstruct., 39, 348 (2006)
- Muller J, Schope G, Kluth O, Rech B, Ruske M, Trube J, Szyszka B, Jiang X, Brauer G, Thin Solid Films, 392(2), 327 (2001)
- Takahashi K, Funakubo H, Ohashi N, Haneda H, Thin Solid Films, 486(1-2), 42 (2005)
- Kim HK, Bae JW, Kim KK, Park SJ, Seong TY, Adesida I, Thin Solid Films, 447, 90 (2004)
- Park IH, Lee JW, Chung CW, J. Korean Ind. Eng. Chem., 16(6), 853 (2005)
- Lide DR, CRC Handbook of Chemistry and Physics 81st Edition, 4-99, CRC Press, New York (2000)