Macromolecular Research, Vol.15, No.2, 109-113, March, 2007
Activated Physical Properties at Air-Polymer Interface
E-mail:
The surface molecular motion of monodisperse polystyrene (PS) films was examined using scanning viscoelasticity microscopy (SVM) in conjunction with lateral force microscopy (LFM). The dynamic storage modulus, E', and loss tangent, tanδ, at a PS film surface with number-average molecular weights, Mn, smaller than 30 k were found to be smaller and larger than those for the bulk sample, even at room temperature, meaning that the PS surface is in a glass-rubber transition or fully rubbery sate at this temperature when the Mn is small. In order to quantitatively elucidate the dynamics of the molecular motion at the PS surface, SVM and LFM measurements were performed at various temperatures. The glass transition temperature, Tg, at the surface was found to be markedly lower than the bulk Tg, and this discrepancy between the surface and bulk became larger with decreasing Mn. Such an intensive activation of the thermal molecular motion at the PS surfaces can be explained in terms of an excess free volume in the vicinity of the film surface induced by the preferential segregation of the chain end groups.
Keywords:air-polymer interface;polystyrene;scanning viscoelasticity;microscopy;lateral force microscopy
- Garbassi F, Morra M, Occhiello E, Polymer Surfaces, from Physics to Technology, from Physics to Technology (1994)
- Beaucage G, Composto R, Stein RS, J. Polym. Sci. B: Polym. Phys., 31, 319 (1993)
- Reiter G, Europhys. Lett., 23, 579 (1993)
- Wissenburg P, Odijk T, Cirkel P, Mandel M, Macromolecules, 27(1), 306 (1994)
- Keddie JL, Jones RAL, Cory RA, Europhys. Lett., 27, 59 (1994)
- Forrest JA, Dalnoki-Veress K, Stevens JR, Dutcher JR, Phys. Rev. Lett., 77, 2002 (1996)
- Forrest JA, Dalnoki-Veress K, Dutcher JR, Phys. Rev. E, 58, 6109 (1998)
- Kajiyama T, Tanaka K, Ohki I, Ge SR, Yoon JS, Takahara A, Macromolecules, 27(26), 7932 (1994)
- Tanaka K, Taura A, Ge SR, Takahara A, Kajiyama T, Macromolecules, 29(8), 3040 (1996)
- Kajiyama T, Tanaka K, Takahara A, Macromolecules, 30(2), 280 (1997)
- Satomi N, Takahara A, Kajiyama T, Macromolecules, 32(13), 4474 (1999)
- Tanaka K, Takahara A, Kajiyama T, Macromolecules, 30(21), 6626 (1997)
- Tanaka K, Jiang XQ, Nakamura K, Takahara A, Kajiyama T, Ishizone T, Hirao A, Nakahama S, Macromolecules, 31(15), 5148 (1998)
- Kajiyama T, Tanaka K, Satomi N, Takahara A, Macromolecules, 31(15), 5150 (1998)
- Rammerschmidt JA, Moasser B, Gladfelter WL, Haugstad G, Jones RR, Macromolecules, 29(27), 8996 (1996)
- Schmidt RH, Haugstad G, Gladfelter WL, Langmuir, 15(2), 317 (1999)
- Jean YC, Zhang RW, Cao H, Yuan JP, Huang CM, Nielsen B, Asoka-Kumar P, Phys. Rev. B, 56, R8459 (1997)
- DeMaggio GB, Frieze WE, Gidley DW, Zhu M, Hristov HA, Yee AF, Phys. Rev. Lett., 78, 1524 (1997)
- Boiko YM, Prud’homme RE, J. Polym. Sci. B: Polym. Phys., 36, 567 (1998)
- Liu Y, Russell TP, Samant MG, Stohr J, Brown HR, Cossy-Favre A, Diaz J, Macromolecules, 30(25), 7768 (1997)
- Minato K, Takemura T, Jpn. J. Appl. Phys., 6, 719 (1967)
- Ballard DGH, Wignall GD, Schelten J, Eur. Polym. J., 9, 965 (1973)
- Saito N, Okano K, Iwayanagi S, Hideshima T, Solid State Physics, Academic Press, New York, 14 (1963)
- Fox T, Flory P, J. Polym. Sci., 14, 315 (1954)
- Doruker P, Mattice WL, J. Phys. Chem. B, 103(1), 178 (1999)