화학공학소재연구정보센터
Biotechnology Progress, Vol.22, No.6, 1532-1540, 2006
Modeling culture profiles of the heterocystous N-2-fixing cyanobacterium Anabaena flos-aquae
Heterocyst differentiation is a unique feature of nitrogen-fixing cyanobacteria, potentially important for photobiological hydrogen production. Despite the significant advances in genetic investigation on heterocyst differentiation, there were no quantitative culture-level models that describe the effects of cellular activities and cultivation conditions on the heterocyst differentiation. Such a model was developed in this study, incorporating photosynthetic growth of vegetative cells, heterocyst differentiation, self-shading effect on light penetration, and nitrogen fixation. The model parameters were determined by fitting experimental results from the growth of the heterocystous cyanobacterium Anabaena flos-aquae CCAP 1403/13f in media without and with different nitrate concentrations and under continuous illumination of white light at different light intensities (2, 5, 10, 17, 20 and 50 mu E m(-2) s(-1)). The model describes the experimental profiles well and gives reasonable predictions even for the transition of growth from that on external N source to that via nitrogen fixation, responding to the change in external N concentrations. The significance and implications of the best-fit values of the model parameters are discussed.