Chemical Engineering Science, Vol.61, No.24, 7850-7863, 2006
Tomographic imaging during reactive precipitation in a stirred vessel: Mixing with chemical reaction
Electrical resistance tomography (ERT) allows the user to non-invasively 'see inside their process' through the manipulation and measurement of electrical properties enabling a powerful real-time visualisation of the time evolving three-dimensional conductivity distributions within the process unit. A 4-plane 16-sensor ERT array retrofitted to a 7.51 stirred vessel has been used to rigorously interrogate the single feed semi-batch precipitation of barium sulphate, providing over 1000 spatially varying data points per 'captured' frame. A variety of reactant concentrations and agitation intensities were investigated. The results obtained reflect both the hydrodynamics and complex reaction kinetics involved with reactions and detail a number of very distinct regions during the experimental runs. This is achieved through the direct visualisation of the induced feed plume, quantification of the homogeneity ('mixedness') within the vessel, time evolving conductivity trends and a further analysis into the rates of conductivity changes as the reaction proceeds. For some experimental runs the predicted conductivity trends for a perfectly mixed state have been calculated using a conductivity-concentration correlation. ERT offers many spatially varying data points as opposed to point wise measurements which offers a significant improvement for the validation of mathematical models which attempt to deal with reactive crystallisation. As well as data collection, specifically for model validation, ERT may offer the means to control the spatio-temporal distributions of reactants and phases within the reactor to aid the suppression of unwanted by-products for industrial processes whilst offering a means to monitor the process unit to ensure the required mixing intensity is always achieved. Also included is an analysis of the mean volume diameter of the precipitate for each experimental run with scanning electron microscope (SEM) images. (c) 2006 Elsevier Ltd. All rights reserved.