- Previous Article
- Next Article
- Table of Contents
International Journal of Control, Vol.80, No.1, 150-165, 2007
GMV control of non-linear continuous-time systems including common delays and state-space models
A non-linear generalized minimum variance control law is proposed for the control of non-linear continuous-time multivariable systems with common delays on input and output channels. The quadratic cost index involves both error and control signal costing terms. The solution for the control law is obtained using a non-linear operator representation of the plant and a linear state-equation model for the disturbance and reference models. The reference and disturbance models are represented by linear subsystems. However, the plant model can be in a very general non-linear operator form, which could involve state-space, transfer operators or non-linear function look up tables. The structure of the system and criterion is chosen so that a simple controller structure and solution is obtained. The controller obtained is simple to implement, particularly in one form, which might be considered to be a state-space version of a non-linear Smith predictor. The results are related to those for discrete-time systems but the presence of the transport delay terms complicates the solution rather more in the continuous-time case.