화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.110, No.49, 24987-24992, 2006
Effects of an amphipathic alpha-helical peptide on lateral pressure and water penetration in phosphatidylcholine and monoolein mixed membranes
The physicochemical properties of mixed membranes of 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) and a nonlamellar-forming lipid, 1-monoolein (MO), and the effects of an amphipathic alpha-helical peptide, 18A (DWLKAFYDKVAEKLKEAF), on the membranes were investigated by fluorescence measurements and P-31 NMR. The intramolecular excimer formation of dipyrenylphosphatidylcholines showed that the increased lateral pressure near the bilayer center by MO is reduced by the lamellar-cubic phase transition at an MO mole fraction of 0.7, while the lateral pressure near the polar-apolar interface increases even through the phase transition. The fluorescence lifetime of 2-(9-anthroyloxy) stearic acid revealed that water penetration into the interface region increases with the MO fraction. The insertion of the 18A peptide into the membrane interface region decreased both the lateral pressure near the interface and water penetration, and shifted the lamellar-cubic phase transition to a higher MO fraction. This suggests that 18A induces a positive curvature strain and lowers the lateral pressure and water penetration. Furthermore, the increase in the MO fraction in POPC/MO LUV promoted partitioning of 18A to the membranes. This preferential binding to the MO-containing membranes is presumably ascribed to the propensity of 18A to reduce the membrane strain.