Journal of Physical Chemistry B, Vol.110, No.49, 25074-25079, 2006
Classical molecular electrostatics: Recognition of ligands in proteins and the vibrational stark effect
It is shown that classical electrostatics quantitatively describes both the binding of the diatomic ligands XO (X = C, N, O) to the heme group in myoglobin and the dependence of their vibrational frequencies upon an external field, the vibrational Stark effect. The key is a proper treatment of induced dipoles. The results suggest that ligand binding occurs via an "electrostatic bond", a generalization of the standard ionic bond to include induction, and, more generally, that classical electrostatics can replace quantum mechanics for a considerable simplification of some complex problems.