화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.110, No.51, 25740-25745, 2006
Phase transformations in bulk nanostructured potassium niobiosilicate glasses
In potassium niobiosilicate (KNS) glasses, nanostructuring can be driven and controlled by thermal treatments at the glass transition temperature and/or by modulation of the chemical composition. The tight relationship between nanostructure and nonlinear optical properties suggests these bulk nanomaterials as an appealing route to nanophotonics. The focus of this paper is placed on assessing the phase transformations which occur in these materials upon annealing at the glass transition temperature and subsequent heating. High-temperature resolved X-ray diffraction (HTXRD) and high-resolution transmission electron microscopy (HRTEM) experiments are integrated with previously published results for in-depth insight. It will be shown that nanostructuring evolves from nucleation of niobium-rich nanocrystals, which are up to 20 nm large, uniformly distributed in the matrix bulk, and metastable. Formation kinetics as well as phase transformation of the nanocrystals are determined by the glass composition. Depending on it, nanocrystal nucleation can be preceded or not by phase separation, and the nanocrystals' phase transition can be of first or second order.