화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.110, No.51, 26143-26147, 2006
Kinetic study for the inclusion complex of carboxylic acids with cyclodextrin by the ultrasonic relaxation method
Ultrasonic absorption coefficients in the frequency range of 0.8-95 MHz were measured in aqueous solutions containing both beta-cyclodextrin (beta-CD) (host) and butanoic acid (in its dissociated form and undissociated one) (guest). A single relaxational phenomenon was observed only when the solutes were coexisting, although no relaxation was found in the beta-CD solution or in the acid solutions. The absorption was also measured in a solution of pentanoic acid (dissociated form) with beta-CD, and single relaxation was detected. The ultrasonic relaxation observed in these solutions was due to a perturbation of a chemical equilibrium related to a reaction of an inclusion complex formed by the host and guest. The equilibrium constant was obtained from the dependence of the maximum absorption per wavelength on the guest concentration. The rate constant for the inclusion process of the guest into a cavity of beta-CD and that for the leaving process from the cavity were determined from the obtained relaxation frequency and the equilibrium constant. The standard volume change of the reaction was also computed from the maximum absorption per wavelength. These results were compared with those in solutions containing both beta-CD and different guest molecules. It was found that the hydrophobicity of guest molecules played an important role in the formation of the inclusion complex and also that the charge on the carboxylic group had a considerable effect on the kinetic characteristics of the complexation reaction.