Langmuir, Vol.22, No.26, 10889-10892, 2006
Micropatterning of cell-repellent polymer on a glass substrate for the highly resolved virus Microarray
The development of a simple and easily accessible method to control cellular behavior under a spatially controlled surface is critical for fundamental studies in biotechnology. We fabricated a microarray of Spodoptera frugiperda 9 (Sf9) cells on a glass surface by microcontact printing cell-repellent polymeric molecules of poly(ethylene glycol)branched- poly( methyl methacrylate) as a template for cell micropatterning. The polymer micropatterns enabled the stable confinement of Sf9 cells on the surface, resulting in the formation of a cell microarray. Subsequently, the patterned Sf9 cells were infected with recombinant baculovirus modified with green fluorescent protein (GFP) to form a virus microarray, and GFP expression in the virus microarray was verified with confocal fluorescence microscopy.