화학공학소재연구정보센터
Bioresource Technology, Vol.98, No.2, 253-259, 2007
Biosorption of 2,4-dichlorophenol by immobilized white-rot fungus Phanerochaete chrysosporium from aqueous solutions
The fungus Phanerochaete chrysosporium was immobilized in several polymer matrices: Ca-alginate, Ca-alginate-polyvinyl alcohol (PVA) and pectin, and was then used as a biosorbent for removing 2,4-dichlorophenol (2,4-DCP) in wastewater. Immobilization of P. chrysosporium onto pectin was less efficient than that onto other matrices because of its poor mechanical strength and low adsorption efficiency. Ca-alginate immobilized fungal beads with biocompatibility exhibited good mechanical strength and adsorption efficiency over 60%. Among the different biomass dosages in Ca-alginate immobilized fungal beads, 1.25% (w/v) was the optimum. The adsorption data of 2,4-DCP on the blank Ca-alginate beads, free, and immobilized fungal biomass could be described by the Langmuir and Freundlich isotherms very well. Desorption operation was efficiently completed by using distilled water as eluant, and the desorption efficiency reached 82.16% at an optimum solid/liquid ratio of 14.3. The consecutive adsorption/desorption cycles studies employing the Ca-alginate immobilized fungal beads demonstrated that the immobilized fungal biomass could be reused in five cycles without significant loss of adsorption efficiency and adsorbent weight. (c) 2006 Elsevier Ltd. All rights reserved.