Journal of Colloid and Interface Science, Vol.306, No.1, 118-127, 2007
Covalent molecular assembly of multilayer dendrimer ultrathin films in supercritical medium
Ultrathin films containing dendrimers are fabricated on amine- and anhydride-derivatized silicon dioxide surface through alternate layer-by-layer (LbL) assembly of pyromellitic dianhydride (PMDA) and poly(amidoamine) (PAMAM) dendrimer in supercritical carbon dioxide (SCCO2) with interlayer linkage established by covalent bonds. X-ray photoelectron and UV-visible absorption spectroscopies, atomic force microscopy (AFM), and ellipsometry were employed to study the interfacial chemistry, growth, morphology, and thickness of the assembled film. XPS analysis suggests that the PMDA/PAMAM interlayer covalent bond is established to completion, and functional surfaces for immobilization of the next layer are available after deposition of each layer. UV-visible absorption and ellipsometry revealed layer-by-layer growth of the film. The functional property film as a porous matrix was manifested in the reduction of the refractive index upon introduction of the dendrimer. (c) 2006 Elsevier Inc. All rights reserved.