화학공학소재연구정보센터
Journal of Colloid and Interface Science, Vol.306, No.2, 386-390, 2007
Induced chirality of supramolecular assemblies of some amphiphiles with beta-cyclodextrin through the interaction at the air/water interface
4-(N-Stearoylamino)-2-amino-azobenzene (AzoNH2C18) and 4-(N-stearoylamino)-azobenzene (AzoC18) have been synthesized. The inclusion complex formation of AzoNH2C18 and beta-cyclodextrin (beta-CyD) at the air/water interface was investigated and compared to that of AzoC18. It has been found that both the amphiphiles can form stable monolayer films on water surface. When the amphiphiles were spread on the aqueous solution of beta-CyD, AzoNH2C18 can form inclusion complexes with the beta-CyD molecules at the interface while AzoC18 cannot. The inclusion complex formation was confirmed by the changes in the isotherms and the circular dichroism (CD) and Fourier transform infrared (FT-IR) spectra of the transferred LS films. Atomic force microscopy (AFM) observation found morphological changes in the course of complex formation. It was suggested that the additional amino group in the azobenzene ring plays an important role in forming the inclusion complex in situ at the air/water interface. (c) 2006 Elsevier Inc. All rights reserved.