화학공학소재연구정보센터
Journal of Colloid and Interface Science, Vol.307, No.1, 215-220, 2007
Molecular behavior and synergistic effects between sodium dodecylbenzene sulfonate and Triton X-100 at oil/water interface
Significant synergistic effects between sodium dodecylbenzene sulfonate (SDBS) and nonionic nonylphenol polyethylene oxyether, Triton X-100 (TX-100), at the oil/water interface have been investigated by experimental methods and computer simulation. The influences of surfactant concentration, salinity, and the ratio of the two surfactants on the interfacial tension were investigated by conventional interfacial tension methods. A dissipative particle dynamics (DPD) method was used to simulate the adsorption properties of SDBS and TX-100 at the oil/water interface. The experiment and simulation results indicate that ultralow (lower than 10(-3) mN m(-1)) interfacial tension can be obtained at high salinity and very low surfactant concentration. Different distributions of surfactants in the interface and the bulk solution corresponding to the change of salinity have been demonstrated by simulation. Also by computer simulation, we have observed that either SDBS or TX-100 is not distributed uniformly over the interface. Rather, the interfacial layer contains large cavities between SDBS clusters filled with TX-100 clusters. This inhomogeneous distribution helps to enhancing our understanding of the synergistic interaction of the different surfactants. The simulation conclusions are consistent with the experimental results. (c) 2006 Elsevier Inc. All rights reserved.