화학공학소재연구정보센터
Journal of Membrane Science, Vol.287, No.1, 29-40, 2007
Membrane thickness and preparation temperature as key parameters for controlling the macrovoid structure of chiral activated membranes (CAM)
A macrovoid structure is formed in polysulfone (PSf) polymeric membranes prepared by the immersion technique using N-dimethylformamide (DMF)/water as a solvent/non-solvent pair. It is actually important controlling the macrovoid formation process, because macrovoids can cause unwanted mechanical failure during high-pressure applications. In order to control the formation of these structures, the influence of different parameters like membrane thickness, solvent additives (isopropyl myristate, IPM or N-hexadecyl-L-hydroxypriline, HHP), temperature of the coagulation bath, and solvent/non-solvent pair has been studied for chiral activated membranes. With the same purpose, corresponding membranes where physically characterized by scanning electron microscopy (SEM) measurements of their cross-section images. Those SEM images have been treated by the software IFME (R), which provides the parameters of asymmetry and irregularity of the membranes. The surface of the membranes has been analyzed by atomic force microscopy (AFM) and brightness analysis in order to calculate their roughness. A comparison of the same PSf membranes, but prepared by evaporation precipitation, or by using chloroform/methanol as solvent/non-solvent pair during the immersion precipitation step, has been also checked. That paper helps us to understand and predict which will be the best conditions to prepare the optimum membranes. (c) 2006 Elsevier B.V. All rights reserved.