화학공학소재연구정보센터
Journal of Physical Chemistry A, Vol.111, No.5, 858-871, 2007
Spectroscopic investigation of the structures of dialkyl tartrates and their cyclodextrin complexes
Structures of three dialkyl tartrates, namely, dimethyl tartrate, diethyl tartrate, and diisopropyl tartrate, in CCl4, dimethyl sulfoxide (DMSO)/DMSO-d(6), and H2O/D2O solvents have been investigated using vibrational absorption (VA), vibrational circular dichroism (VCD), and optical rotatory dispersion (ORD). VA, VCD, and ORD spectra are found to be dependent on the solvent used. Density functional theory (DFT) calculations are used to interpret the experimental data in CCl4 and DMSO. The trans-COOR conformer with hydrogen bonding between the OH group and the CO group attached to the same chiral carbon is dominant for dialkyl tartrates both in vacuum and in CCl4. The experimental VA, VCD, and ORD data of dialkyl-D-tartrates in CCl4 correlated well with those predicted for dimethyl-(S,S)-tartrate molecule as both isolated and solvated in CCl4. In DMSO solvent, dialkyl tartrate molecules favor formation of intermolecular hydrogen bonding with DMSO molecules. Clusters of dimethyl-(S,S)-tartrate, with one molecule of dimethyl-(S,S)-tartrate hydrogen bonded to two DMSO molecules, are used for the DFT calculations. A trans-COOR cluster and a trans-H cluster are needed to obtain a reasonable agreement between the predicted and experimental data of dimethyl tartrate in DMSO solvent. VA, VCD, and optical rotations are also measured for dialkyl tartrate-cyclodextrin complexes. It is noted that these properties are barely affected by complexation of dialkyl tartrates with cyclodextrins, indicating weak interaction between tartrates and cyclodextrin. Binding constants of alpha-CD and beta-CD with diethyl L-tartrate in both H2O and DMSO have been determined using isothermal titration calorimetry technique. The smaller binding constants (less than 100) confirmed the weak interaction between tartrates and cyclodextrin in the solution state.