Journal of Physical Chemistry B, Vol.111, No.5, 946-954, 2007
Enhancement of two-photon absorption cross-section in macrocyclic thiophenes with cavities in the nanometer regime
The linear and nonlinear optical properties of two thiophene-based cyclic molecules have been investigated. These molecules represent nanometer sized cavities which may be useful for novel photonic devices. By virtue of long-range interactions, these chromophores serve as novel architectures for enhanced two-photon absorption (TPA) properties. Measurements of the different size ring structures showed a 550% increase in the TPA cross-section for the larger macrocycle. Electronic structure calculations have suggested an increase in coupling of the excited states in these systems as the ring size is increased. Measurements of the ultrafast transient absorption and fluorescence were carried out with these systems in order to probe the interaction between the chromophores. The results of the transient decays as well as fluorescence anisotropy decay times gives stronger proof to the suggestion of delocalized states in the cyclic macrocycles. These results provide information regarding the optical properties of these novel systems useful for potential applications in photonics.