Journal of the American Chemical Society, Vol.129, No.3, 719-722, 2007
Formation of water-dispersible nanotubular graphitic assembly decorated with isothiouronium ion groups and its supramolecular functionalization
A newly designed Gemini-shaped hexabenzocoronene amphiphile (1), carrying an isothiouronium ion-appended side chain, self-assembles in CH2Cl2 to form a nanotubular object, whose graphitic wall is densely covered by a positively charged molecular layer of isothiouronium ion pendants. The graphitic nanotube can be dispersed uniformly in aqueous media owing to effective hydration as well as electrostatic repulsion. Post-supramolecular functionalization of the nanotube surface is possible, without disruption of the tubular morphology, by taking advantage of a specific interaction of the isothiouronium ion pendants with oxoanion guests. Mixing with sodium poly(4-styrenesulfonate) results in wrapping of the nanotube, while complexation with an electron-accepting oxoanion such as anthraquinone carboxylate allows photoinduced electron transfer from the graphitic wall to the bound guest molecules.