화학공학소재연구정보센터
Journal of the Electrochemical Society, Vol.154, No.2, B247-B257, 2007
Analysis of current distribution at PEFCs using measured membrane properties and comparison with measured current distribution
In order to properly understand the power generation performance of polymer electrolyte fuel cells (PEFCs), it is necessary to have accurate data on water management, such as the diffusion coefficient of water through the membrane electrode assembly (MEA) and gas diffusion layer (GDL), electro-osmotic coefficient through MEA, and power loss data such as the activation and resistance overpotentials. In this study we measured these data with the aim of analyzing our experimental results from PEFC power generation tests done using our two-dimensional simulation code. Our code simultaneously solves mass, charge, and energy conservation equations, and the equivalent electric-circuit for PEFC to obtain numerical distributions of hydrogen/ oxygen concentrations, cell potential, current density, and gas/cell-component temperatures. The current density distributions calculated with our simulation code were compared with the distribution measured using a segmented electrode cell. The distributions measured under various operating conditions agreed well with the calculated ones, demonstrating that our code is reliable. The concentration overpotential through GDL was also estimated with the parallel fine-pore model, but the estimated concentration overpotential was very small. Also, the cathode flooding is discussed with the calculated distribution of saturation degree along the channel flow, in comparison with experimental stability. (c) 2006 The Electrochemical Society.