화학공학소재연구정보센터
Journal of Vacuum Science & Technology B, Vol.24, No.6, 3234-3238, 2006
Directly patterning ferroelectric films by nanoimprint innography with low temperature and low pressure
In this article, the authors demonstrate an imprint method for patterning ferroelectric films. In contrast to conventional nanoimprint lithography, the patterned mold is directly imprinted in a ferroelectric film or a metal/ferroelectric film bilayer structure. In general, direct imprint in a ferroelectric or metal film needs ultrahigh pressure or temperature to form patterns. In this article, the authors improve the direct imprint processes by using a sharp mold and an underlying soft gel film for the reduction of the imprint pressure and temperature. The imprint pressure can be reduced to be compatible with the conventional nanoimprint instrument. The authors also successfully use the metal/ferroelectric bilayer structure to overcome the pattern flattened problem in a gel film. The cover metal layer can also be the upper conductive layer in the ferroelectfic application. For direct contact of the metal film with mold, no surfactant should be coated on the surface of mold. It also indicates that no mold-rework processes are necessary for this direct imprint ferroelectric film method. (c) 2006 American Vacuum Society.