화학공학소재연구정보센터
Applied Catalysis B: Environmental, Vol.71, No.3-4, 223-236, 2007
Removal of refractory S-containing compounds from liquid fuels on novel bifunctional CoMo/HMS catalysts modified with Ti
This study shows that titanium incorporation into hexagonal mesoporous silica (HMS) material has a positive effect on the activity of supported CoMo, catalysts in the hydrodesulfurization (HDS) of dibenzothiophene (DBT) and 4-ethyl,6-methyl-dibenzothiophene (4E6MDBT). All catalysts showed the highest activity in the HDS of DBT than in the HDS of 4E6MDBT. The low reactivity observed in the HDS of 4E6MDBT is caused by the steric hindrance of the two alkyl groups at positions 4 and 6. The HDS of DBT over Ti-free catalyst proceeds exclusively via the direct desulfurization (DDS) route whereas over Ti-containing catalysts proceed via DDS (main route) and hydrogenation (HYD) pathway. The catalyst with a Si/Ti = 40 (molar ratio) was the most active in the HDS of DBT. A further increase in the Ti-content led to a decrease in Bronsted acidity and the S-BET specific area of the catalysts, which implies a decrease in the bifunctional character of the catalysts. Raman spectroscopy demonstrated that Ti-incorporation into HMS material leads to a decrease in the degree of polymerization of Mo species, and this implies a better dispersion of MoS2, in good agreement with the XPS measurements. Regarding the HDS-resistant 4E6MDBT, the HDS reaction over the Ti-free catalyst was found to proceed exclusively via the dealkylation (DA) route. After Ti-incorporation into HMS material, additional acid-catalyzed isomerization occurs. With respect to industrial sample, the catalyst with Si/Ti = 40 showed lower intrinsic activity as well as greater selectivity toward isomerization route products. (C) 2006 Elsevier B.V. All rights reserved.