Applied Microbiology and Biotechnology, Vol.74, No.2, 501-510, 2007
Isolation and characterization of naphthalene-catabolic genes and plasmids from oil-contaminated soil by using two cultivation-independent approaches
Two different cultivation-independent approaches were applied to isolate genes for naphthalene dioxygenase (NDO) from oil-contaminated soil in Japan. One approach was the construction of a broad-host-range cosmid-based metagenomic DNA library, and the other was the so-called exogenous plasmid isolation technique. Our screening of NDO genes in both approaches was based on the functional complementation of Pseudomonas putida strains which contained Tn4655K, a transposon carrying the entire set of naphthalene-catabolic (nah) genes but lacking the NDO-encoding gene. We obtained in the former approach a cosmid clone (pSLX928-6) that carried an nah upper pathway operon for conversion of naphthalene to salicylate, and this operon showed a significantly high level of similarity to the corresponding operon on an IncP-9 naphthalene-catabolic plasmid, pDTG1. In the latter approach, the microbial fraction from the soil was mated with a plasmid-free P. putida strain containing a chromosomal copy of Tn4655K, and transconjugants were obtained that received either a 200- or 80-kb plasmid containing all the nah genes for the complete degradation of naphthalene. Subsequent analysis revealed that (1) both plasmids belong to the IncP-9 incompatibility group; (2) their nah upper pathway operons are significantly similar, but not completely identical, to those of pDTG1 and pSLX928-6; and (3) these plasmids carried genes for the salicylate metabolism by the meta-cleavage pathway.