화학공학소재연구정보센터
Langmuir, Vol.23, No.5, 2778-2783, 2007
Synthesis and gelation properties of PEG-PLA-PEG triblock copolymers obtained by coupling monohydroxylated PEG-PLA with adipoyl chloride
Ring-opening polymerization of D,L-lactide was carried out in the presence of monohydroxylated poly(ethylene glycol) (PEG) with M-n of 2000 and 5000, using zinc powder as catalyst. The resulting PEG-b-polylactide (PEG-PLA) diblocks with various ethylene oxide/lactyl (EO/LA) ratios were coupled with adipoyl chloride to yield PEG-PLA-PEG triblock copolymers. N-Dimethylaminopyridine (DMAP) was used as catalyst. The obtained PEG-PLA-PEG triblock copolymers were characterized by various analytical techniques such as IR, H-1 NMR, size exclusion chromatography, X-ray diffraction, and differential scanning calorimetry. Data showed that all the copolymers were semicrystalline with the PEG-type crystalline structure, the crystallinity decreasing with increasing PLA block length. Bioresorbable hydrogels were prepared from the water-soluble triblock copolymers. Rheological measurements showed a gel-sol transition with increasing temperature and gelation was found to be thermoreversible. The copolymer solution behaves like a viscoelastic liquid above the gel point and like a viscoelastic solid below the gel point. The critical gelation concentration, the gel-sol transition temperature at a given concentration, and corresponding moduli depend on both the EO/LA ratio and the molecular weight of the copolymers. It is assumed that gelation results from interactions between PEG blocks at low temperatures and that these interactions are disrupted as the temperature is elevated. The shrinking of PEG blocks with increasing temperature seems to be in agreement with the variation of the gel-sol transition temperatures.