Langmuir, Vol.23, No.6, 3242-3253, 2007
Dynamics of adsorption of an oppositely charged polymer-surfactant mixture at the air-water interface: Poly(dimethyldiallylammonium chloride) and sodium dodecyl sulfate
The dynamic adsorption behavior of mixtures of the cationic polymer poly(dimethyldiallylammonium chloride) [poly(dmdaac)] and the anionic surfactant sodium dodecyl sulfate (SDS) has been studied at the expanding liquid surface of an overflowing cylinder. A combination of ellipsometry and external reflection Fourier transform infrared spectroscopy was used to measure the adsorbed amounts of poly(dmdaac) and SDS as a function of the bulk surfactant concentration for various polymer concentrations in the range 0-0.2 g dm(-3). Laser Doppler velocimetry was used to determine the surface age, which was similar to 1 s for solutions where the polymer adsorbed. The interfacial behavior is rationalized in terms of competition between surface activity and mass transport to the expanding surface. At low surfactant concentrations, adsorption of both poly(dmdaac) and SDS is enhanced as a result of the formation in solution of polymer-surfactant complexes that are more surface active than either component alone. The rate of adsorption of these complexes is diffusion-controlled, and their interfacial composition remains constant at three dmdaac units per SDS molecule over a 5-fold change in the surfactant concentration. For the higher polymer concentrations studied, the complexes saturate the air-water interface: the adsorbed amount is independent of the polymer concentration and remains constant also over a factor of 5 in the surfactant concentration. Once the number of bound surfactant molecules per dmdaac monomer exceeds 0.3, the complexes begin to form large aggregates, which are not surface active due to their slower mass transport. The adsorbed amount decreases rapidly on approach to the equivalence point (one SDS molecule per dmdaac monomer), and when it is reached, only a very small amount of material remains at the interface. At still higher surfactant concentrations, the free SDS adsorbs but there is no adsorbed poly(dmdaac). The dynamic adsorption data are compared with equilibrium measurements of the same system by Staples et al. (Langmuir 2002, 18, 5147), which show very different surface compositions and no significant change in surface coverage at the equivalence point.