화학공학소재연구정보센터
Polymer, Vol.48, No.5, 1176-1184, 2007
Inorganic-organic interpenetrating polymer networks involving polyhedral oligomeric silsesquioxane and poly(ethylene oxide)
A novel organic-inorganic interpenetrating polymer network (IPN) was prepared via in situ crosslinking between octa(propylglycidyl ether) polyhedral oligomeric silsesquioxane (OpePOSS) and 2,2-bis(4-hydroxyphenyl)propane in the presence of poly(ethylene oxide) (PEO). The miscibility and intermolecular specific interactions of the IPNs were investigated by means of differential scanning calorimetry (DSC), transmission electron microscopy (TEM) and Fourier transform infrared (FTIR) spectroscopy. In view of the results of calorimetric analysis and morphological observation, it is judged that the components of the organic-inorganic IPNs are fully miscible. The FIFIR spectroscopy shows that there are inter-component hydrogen bonding interactions between the POSS network and PEO. The measurements of static contact angle show that the hydrophilicity (and/or the surface free energy) of the organic-inorganic IPNs increased with the addition of the miscible and water-soluble polymer (i.e., PEO). Thermogravimetric analysis (TGA) shows that the thermal stability of the lPNs was quite dependent on the mass ratios of the POSS network to PEO. (c) 2007 Elsevier Ltd. All rights reserved.