화학공학소재연구정보센터
Polymer(Korea), Vol.31, No.4, 343-348, July, 2007
Poly(VDF/TrFE/CTFE) 3성분계 고분자의 배열구조에 따른 상전이 온도의 변화
Curie Temperature Transition According to Microstructure of Polymer Chain in Poly(VDF/TrFE/CTFE) Terpolymer
E-mail:
초록
이 논문에서는 vinylidene fluoride(VDF), trifluoroethylene(TrFE), chlorotrifluoroethylene(CTFE)을 사용하여 3성분계 고분자를 합성하였으며, 저온 개시제 di-tertiary-butylperoxide(DTBP)를 사용하여 현탁중합하였다. NMR, FT-IR을 통해 3성분계 고분자 사슬의 미세구조, 사슬형태의 변화에 대해 알 수 있었다. CTFE mol%가 증가할수록 β상태는 점차적으로 감소하고 γ상태는 증가하는 것을 알 수 있었다. DSC 분석결과, CTFE mol%가 증가할수록 상전이 온도(Tc)는 상온으로 낮아지며 그 곡선은 점차 작아지고 넓게 퍼지는 현상을 확인하였다. 활성화 에너지는 Freeman-Carroll법에 의해 계산되었다.
In this study, terpolymer of vinylidene fluoride (VDF), trifluoroethylene (TrFE), and chlorotrifluoroethylene (CTFE) were prepared by suspension polymerization using di-tertiary-butyl peroxide (DTBP) as an initiator. The structural characteristics including microstructure and chain conformation of the polymers have been carefully elucidated as a function of the chemical composition using NMR, FT-IR. The intensity of absorption bands of the β-phase gradually decreases and the γ-phase increases with the increment of CTFE mol%. The analysis results of DSC shows that the Curie phase transition temperature (Tc) of the terpolymer gradually shifts to ambient temperature and trace becomes smaller and broader with the increment of CTFE mol%. Also, activation energies of the samples were calculated by Freeman-Carroll method.
  1. Bickford B, Nonvolatile memory requirements in a mobile computing environment, 1996 Int. 1 NonVolatile Memory Technology Conference 3 (1996)
  2. Baik SJ, Choi S, Chyng UI, Moon JT, 2003 IEDM Technical Digest, Session, 22, 3 (2003)
  3. Choi JS, Yoo YM, Suh DH, J. Korean Ind. Eng. Chem., 15(8), 815 (2004)
  4. Takahashi Y, Furukawa T, Macromolecules, 37(8), 2807 (2004)
  5. Cheng ZY, Olson D, Xu HS, Xia F, Hundal JS, Zhang QM, Bateman FB, Kavarnos GJ, Ramotowski T, Macromolecules, 35(3), 664 (2002)
  6. Lu YY, Claude J, Zhang QM, Wang Q, Macromolecules, 39(20), 6962 (2006)
  7. Chung TC, Petchsuk A, Macromolecules, 35(20), 7678 (2002)
  8. Wang ZM, Zhang ZC, Chung TCM, Macromolecules, 39(13), 4268 (2006)
  9. Kubouchi Y, Kumetani Y, Yagi T, Masuda T, Nakajima A, Pure Appl. Chem., 61, 83 (1989)
  10. Maboux PY, Gleason KK, J. Fluor. Chem., 113, 27 (2002)
  11. Itoh T, Maeda K, Shibata H, Tasaka S, Hashimoto M, J. Phys. Soc. Jpn., 97, 23 (1998)
  12. Lu YY, Claude J, Zhang QM, Wang Q, Macromolecules, 39(20), 6962 (2006)
  13. Isbester PK, Brandt JL, Kestner TA, Munson EJ, Macromolecules, 31(23), 8192 (1998)
  14. Mabboux PY, Gleason KK, J. Fluor. Chem., 113, 27 (2002)
  15. Tshiro K, Tadokoro H, Kobayashi M, Ferroelectrics, 32, 167 (1981)
  16. Louinger AJ, Development in crystalline polymer, Applied Science, London, p. 52 (1982)
  17. Tashiro K, Itoh Y, Kobayahi M, Tadokoro H, Macromolecules, 18, 2600 (1985)
  18. Dikshit AK, Nandi AK, Macromolecules, 33(7), 2616 (2000)
  19. Tashiro K, Kobayashi M, Tadokoro H, Macromolecules, 14, 1757 (1981)
  20. Reynolds NM, Kim KJ, Chang C, Hsu SL, Macromolecules, 22, 1100 (1989)
  21. Kim KJ, Kim GB, Vanlencia CL, Rabolt JF, J. Polym. Sci. B: Polym. Phys., 32(15), 2435 (1994)
  22. Osaki S, Ishida Y, J. Polym. Sci., 13, 1074 (1975)
  23. Xu HS, Shanthi G, Bharti V, Zhang QM, Ramotowski T, Macromolecules, 33(11), 4125 (2000)
  24. Lee SG, Synthesis and Phase Transition Behavior of Fluorinated Ferroelectric Polymer for Polymer Random Access Memory, Chungbuk National University, Master's Thesis (2006)
  25. Freeman ES, Carroll B, J. Phys. Chem., 62, 394 (1958)