화학공학소재연구정보센터
Macromolecular Research, Vol.15, No.5, 424-429, August, 2007
Surface Hydrolysis of Fibrous Poly(ε-caprolactone) Scaffolds for Enhanced Osteoblast Adhesion and Proliferation
E-mail:,
A procedure for the surface hydrolysis of an electrospun poly(ε-caprolactone) (PCL) fibrous scaffold was developed to enhance the adhesion and proliferation of osteoblasts. The surface hydrolysis of fibrous scaffolds was performed using NaOH treatment for the formation of carboxyl groups on the fiber surfaces. The hydrolysis process did not induce deformation of the fibers, and the fibers retained their diameter. The cell seeding density on the NaOH-treated PCL fibrous scaffolds was more pronounced than on the non-treated PCL fibers used as a control. The alkaline phosphatase activity, osteocalcin and a mineralization assay strongly supported that the surface-hydrolyzed PCL fibrous scaffolds provided more favorable environments for the proliferation and functions of osteoblasts compared to the non-treated PCL fibrous scaffolds use as a control.
  1. Luong-Van E, Grøndahl L, Chua KN, Leong KW, Nurcombe V, Cool SM, Biomaterials, 27, 2042 (2006)
  2. Katti DS, Robinson KW, Ko FK, Laurencin CT, J. Biomed. Mater. Res., 70B, 286 (2004)
  3. Kim K, Luu YK, Chang C, Fang DF, Hsiao BS, Chu B, Hadjiargyrou M, J. Control. Release, 98, 47 (2004)
  4. Zeng J, Xu X, Chen X, Liang Q, Bian X, Yang L, Jing X, J. Control. Release, 92, 227 (2003)
  5. Kenawy E, Bowlin GL, Mansfield K, Layman J, Simpson DG, Sanders EH, Wnek GE, J. Control. Release, 81, 57 (2002)
  6. Verreck G, Chun I, Rosenblatt J, Peeters J, Dijck AV, Mensch J, Noppe M, Brewster ME, J. Control. Release, 92, 349 (2003)
  7. Luu YK, Kim K, Hsiao BS, Chu B, Hadjiargyrou M, J. Control. Release, 89, 341 (2003)
  8. Cui W, Li X, Zhu X, Yu G, Zhou S, Weng J, Biomacromolecules, 7, 1623 (2006)
  9. Casper CL, Yamaguchi N, Kiick KL, Rabolt JF, Biomacromolecules, 6, 1998 (2005)
  10. Park H, Lee KY, Lee SJ, Park KE, Park WH, Macromol. Res., 15(3), 238 (2007)
  11. Yoshimoto H, Shina YM, Terai H, Vacanti JP, Biomaterials, 24, 2077 (2003)
  12. Chen J, Chu B, Hsiao BS, J. Biomed. Mater. Res., 79A, 307 (2006)
  13. Serrano MC, Portoles MT, Vallet-Regi M, Izquierdo I, Galletti L, Comas JV, Pagani R, Macromol. Biosci., 5, 415 (2005)
  14. Lee KH, Kim HY, Khil MS, Ra YM, Lee DR, Polymer, 44(4), 1287 (2003)
  15. Zhu Y, Leong MF, Ong WF, Chan-Park MB, Chian KS, Biomaterials, 28, 861 (2007)
  16. Li WJ, Cooper JA, Mauck RL, Tuan RS, Acta. Biomater., 2, 377 (2006)
  17. Ciapetti G, Ambrosio L, Savarino L, Granchi D, Cenni E, Baldini N, Pagani S, Guizzardi S, Causa F, Giunti A, Biomaterials, 24, 3815 (2003)
  18. Kim SE, Rha HK, Surendran S, Han CW, Lee SC, Choi HW, Choi YW, Lee KH, Rhie JW, Ahn ST, Macromol. Res., 14(5), 565 (2006)
  19. Cheng Z, Teoh SH, Biomaterials, 25, 1991 (2004)
  20. Zhu Y, Gao C, Shen J, Biomaterials, 23, 4889 (2002)
  21. Parka GE, Pattisona MA, Park K, Webster TJ, Biomaterials, 26, 3075 (2005)
  22. Gao J, Niklason L, Langer R, J. Biomed. Mater. Res., 42, 417 (1998)
  23. Kowalczynska HM, Kaminski J, J. Cell Sci., 99, 587 (1991)
  24. Curtis A, Forrester J, J. Cell Sci., 71, 17 (1984)
  25. Kim SS, Park MS, Jeon O, Choi CY, Kim BS, Biomaterials, 27, 1399 (2006)
  26. Lee KY, Alsberg E, Hsiong S, Comisar W, Linderman J, Ziff R, Mooney D, Nano Lett., 4, 1501 (2004)