화학공학소재연구정보센터
Polymer(Korea), Vol.31, No.5, 428-435, September, 2007
초고분자량 폴리에틸렌 나노복합체 필름:열적-기계적 성질, 모폴로지 및 기체 투과도
Ultra High Molecular Weight Polyethylene Nanocomposite Films:Thermomechanical Property, Morphology, and Gas Permeability
E-mail:
초록
종류가 다른 두 가지 유기화 점토를 사용하여 얻은 초고분자량 폴리에틸렌(UHMWPE) 나노복합재료의 열적, 기계적 성질 및 기체 투과도를 서로 비교하였다. UHMWPE 복합체 필름을 얻기 위해 유기화 점토로는 헥사메틸렌 벤즈이미다졸-마이카(C16BIMD-Mica)와 Cloisite 25A가 사용되었다. 용액 삽입법을 이용하여 UHMWPE에 여러 다른 농도의 유기화 점토를 분산시켜 나노 크기의 복합재료를 합성하였다. 투과 전자 현미경(TEM)을 이용하여 비록 일부는 뭉쳐진 점토의 형태를 나타내었지만 한편으로는 점토가 나노 크기로 고루 분산되었음을 확인하였다. 약간의 유기화 점토 첨가(1.3 wt%) 만으로도 순수한 UHMWPE에 비해서 나노복합재료의 열적, 기계적 성질 및 기체투과도 성질이 높아짐을 알았다. 또한 전체적으로는 첨가된 두가지 유기화 점토 모두 적당한 농도에서 UHMWPE의 물성 증가에 큰 효과가 있었으며, 매트릭스 고분자에 사용된 두 가지 충전제중 Cloisite 25A가 C16BIMD-Mica 보다 더 우수한 물성을 보였다.
The thermomechanical property, morphology, and gas permeability of nanocomposites of ultra high molecular weight polyethylene (UHMWPE) with two different organoclays are compared. Hexamethylene benzimidazole-mica (C16 BIMD-Mica) and Cloisite 25A were used as reinforcing fillers in the formation of UHMWPE hybrid films. Dispersions of organoclays with UHMWPE were carried out by using the solution intercalation method at different organoclay contents to produce nano-scale composites. Transmission electron microscopy (TEM) micrographs show that some of the clay layers are dispersed homogeneously within the polymer matrix on the nano-scale, although some clay particles are agglomerated. We also found that the addition of only a small amount of organoclay is enough to improve the thermomechanical property and gas barrier of the UHMWPE hybrid films. In general, Cloisite 25A is more effective than C16 BIMD-Mica in increasing both the thermomechanical property and the gas barrier in a UHMWPE matrix.
  1. Kong JS, Han SY, Polym. Sci. Technol., 12, 183 (2001)
  2. Pinnavaia TJ, Beall GW, Polymer-Clay Nanocomposites, John Wiley & Sons, Chichester, England (2001)
  3. Imai Y, Nishimura S, Abe E, Tateyama H, Abiko A, Yamaguchi A, Aoyama T, taguchi H, Chem. Mater., 14, 477 (2002)
  4. Lagaly G, Appl. Clay. Sci., 15, 1 (1999)
  5. Usuki A, Koiwai A, Kojima Y, Kawasumi M, Okada A, Kurauchi T, Kamigaito O, J. Appl. Polym. Sci., 55(1), 119 (1995)
  6. Yano K, Usuki A, Okada A, Kurauchi T, Kamigaito O, J. Polym. Sci. A: Polym. Chem., 31, 2493 (1993)
  7. Osman MA, Mittal V, Morbidelli M, Suter UW, Macromolecules, 36(26), 9851 (2003)
  8. Bharadwaj RK, Macromolecules, 34(26), 9189 (2001)
  9. Chang JH, An YU, Sur GS, J. Polym. Sci. B: Polym. Phys., 41(1), 94 (2003)
  10. Yeun JH, Bang GS, Park BJ, Ham SK, Chang JH, J. Appl. Polym. Sci., 101(1), 591 (2006)
  11. Fukushima Y, Okada A, Kawasumi M, Kurauchi T, Kamigaito O, Clay Min., 23, 27 (1998)
  12. Shelley JS, Mather PT, DeVries KL, Polymer, 42(13), 5849 (2001)
  13. Li Y, Ishida H, Chem. Mater., 14, 1398 (2002)
  14. Li X, Kang T, Jo WJ, Lee JK, Ha CS, Macromol. Rapid Commun., 22, 1306 (2001)
  15. Kim SJ, Mun MK, Chang JH, Polym.(Korea), 29(2), 190 (2005)
  16. Strawhecker KE, Manias E, Chem. Mater., 12, 2934 (2000)
  17. Cendoya I, Lopez D, Alegria A, Mijangos C, J. Polym. Sci. B: Polym. Phys., 39(17), 1968 (2001)
  18. Chang JH, Jang TG, Ihn KJ, Lee WK, Sur GS, J. Appl. Polym. Sci., 90(12), 3208 (2003)
  19. Chin IJ, Thurn-Albrecht T, Kim HC, Russell TP, Wang J, Polymer, 42(13), 5947 (2001)
  20. Hotta S, Paul DR, Polymer, 45(22), 7639 (2004)
  21. Osman MA, Rupp JEP, Suter UW, Polymer, 46(19), 8202 (2005)
  22. Ryu SH, Chang YW, Polym. Bull., 55(5), 385 (2005)
  23. Szazdi L, Pukanszky B, Vancso GJ, Pukanszky B, Polymer, 47(13), 4638 (2006)
  24. Chang JH, An YU, J. Polym. Sci. B: Polym. Phys., 40(7), 670 (2002)
  25. Hsiao SH, Liou GS, Chang LM, J. Appl. Polym. Sci., 80(11), 2067 (2001)
  26. Ke YC, Lu JK, Yi XS, Zhao J, Qi ZN, J. Appl. Polym. Sci., 78(4), 808 (2000)
  27. Chang JH, Kim SJ, Im S, Polymer, 45(15), 5171 (2004)
  28. Chang JH, Mun MK, Lee IC, J. Appl. Polym. Sci., 98(5), 2009 (2005)
  29. Morgan AB, Gilman JW, J. Appl. Polym. Sci., 87, 808 (2003)
  30. Davis CH, Mathias LJ, Gilman JW, Schiraldi DA, Shields JR, Trulove P, Sutto TE, Delong HC, J. Polym. Sci. B: Polym. Phys., 40(23), 2661 (2002)
  31. Galgali G, Ramesh C, Lele A, Macromolecules, 34(4), 852 (2001)
  32. Vaia RA, Jandt KD, Kramer EJ, Giannelis EP, Chem. Mater., 8, 2628 (1996)
  33. Chang JH, Seo BS, Hwang DH, Polymer, 43(10), 2969 (2002)
  34. Fornes TD, Yoon PJ, Hunter DL, Keskkula H, Paul DR, Polymer, 43(22), 5915 (2002)
  35. Chang JH, Jo BW, J. Appl. Polym. Sci., 60(7), 939 (1996)
  36. Chawla KK, Composite Materials Science and Engineering, Springer-Verlag, New York (1987)
  37. Curtin WA, J. Am. Ceram. Soc., 74, 2837 (1991)
  38. Chen L, Wong SC, Pisharath S, J. Appl. Polym. Sci., 88(14), 3298 (2003)
  39. Kojima Y, Usuki A, Kawasumi M, Okada A, Fukushima Y, Kurauchi T, Kamigaito O, J. Mater. Res., 8, 1185 (1993)
  40. Jarus D, Hiltner A, Baer E, Polymer, 43(8), 2401 (2002)
  41. Joly C, Smaihi M, Porcar L, Noble RD, Chem. Mater., 11, 2331 (1999)
  42. Ebeling T, Norek S, Hasan A, Hiltner A, Baer E, J. Appl. Polym. Sci., 71(9), 1461 (1999)
  43. Weinkauf DH, Paul DR, In Effect of Structural Order on Barrier Properties, W. J. Koros, American Chemical Society, Washington, DC (1990)
  44. Ghosal K, Freeman BD, Chern RT, Alvarez JC, Delacampa JG, Lozano AE, Deabajo J, Polymer, 36(4), 793 (1995)
  45. Xu B, Zheng Q, Song YH, Shangguan Y, Polymer, 47(8), 2904 (2006)