화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.24, No.5, 736-741, September, 2007
Pyrolysis of peat: Product yield and characterization
E-mail:
Pyrolysis of peat obtained from Yenicaga, Bolu, Turkey was conducted in a fixed-bed tube furnace under various conditions, and variations in the structure of the char, tar and gas products were examined. The chars produced were studied by proximate and ultimate analyses. The maximum tar yield of 20.41% was obtained at a heating rate of 20 ℃/min, a temperature of 450 ℃, a sweeping gas flow rate of 100 ml/min and a 0.5-2.0mm size range. The chemical composition of the tar was examined by elemental analysis, FTIR spectroscopy, 1H-NMR spectroscopy and column chromatography. The chemical composition of the tar with dense aliphatic structure was established to be CH1.22O0.25N0.02. The composition of the gases obtained at a heating rate of 20 ℃/min for the 0.5-2.0 mm size range was examined by gas chromatography.
  1. Tsai WT, Lee MK, Chang YM, Bioresour. Technol., 98(1), 22 (2007)
  2. Tsai WT, Lee MK, Chang YM, J. Anal. Appl. Pyrolysis, 76, 230 (2006)
  3. Tsamba AJ, Yang W, Blasiak W, Fuel Process. Technol., 87, 523 (2006)
  4. Encinar JM, Gonzalez JF, Gonzalez J, Fuel Process. Technol., 68, 209 (2000)
  5. Fuchsman CH, Peat, Industrial Chemistry and Technology, Academic Press (1980)
  6. Spedding PJ, Fuel, 67, 883 (1988)
  7. Stevenson FJ, Humus chemistry: genesis, composition, reactions, Wiley-Interscience, NY (1982)
  8. Baran A, Relationship between decomposition degrees and some properties of peat in Turkey as plant growth medium, PhD Thesis, Ankara University (1994)
  9. Holst LE, Anderson LA, Bjerle I, Fuel, 70, 1017 (1991)
  10. Aho M, J. Anal. Appl. Pyrolysis, 11, 149 (1987)
  11. Aho M, Kortelainen P, Rantanen J, Linna V, J. Anal. Appl. Pyrolysis, 15, 297 (1989)
  12. Durig JR, Calvert GD, J. Anal. Appl. Pyrolysis, 14, 295 (1989)
  13. Sutton D, Kelleher B, Ross JRH, Biomass Bioenerg., 23, 209 (2002)
  14. Arpiainen V, Lappi M, J. Anal. Appl. Pyrolysis, 16, 355 (1989)
  15. Van Smeerdijk DG, J. Anal. Appl. Pyrolysis, 11, 377 (1987)
  16. Calvert GD, Esterle JS, Durig JR, J. Anal. Appl. Pyrolysis, 16, 5 (1989)
  17. Oades JM, Vassallo AM, Waters AG, Wilson MA, Aust. J. Soil Res., 25, 71 (1987)
  18. Bracewell JR, Robertson GW, Williams BL, J. Anal. Appl. Pyrolysis, 2, 53 (1980)
  19. Durig DT, Esterle JS, Dickson TJ, Durig JR, Appl. Spectrosc., 42(6), 1239 (1988)
  20. Durig JR, Calvert GD, J. Anal. Appl. Pyrolysis, 18, 293 (1991)
  21. Kracht O, Gleixner G, Or. Geochemistry, 31, 645 (2000)
  22. Feng J, Fuel and En. Abstracts, 40, 61 (1999)
  23. Bartle KD, Martin TG, Williams DF, Fuel, 54, 226 (1975)
  24. Bartle KD, Ladner WR, Martin TG, Snape CE, Williams DF, Fuel, 58, 413 (1979)
  25. Putun AE, Ozcan A, Putun E, J. Anal. Appl. Pyrolysis, 52, 33 (1999)
  26. Katyal S, Thambimuthu K, Valix M, Renewable En., 28, 713 (2003)
  27. Kockar OM, Onay O, Putun AE, Putun E, Energy Sources, 22(10), 913 (2000)
  28. Zaror CA, Pyle DL, Pr. Indian Ac. Sc., 5, 269 (1982)
  29. Sensoz S, Can M, Energy Sources, 24(4), 347 (2002)
  30. Williams PT, Besler S, Renew. Energy, 7, 233 (1996)
  31. Onay O, Beis SH, Kockar OM, J. Anal. Appl. Pyrolysis, 58-59, 995 (2001)
  32. Roy C, Chornet E, J. Anal. Appl. Pyrolysis, 5, 261 (1983)
  33. Beis SH, Onay O, Kockar OM, Renew. Energy, 26, 21 (2001)