화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.24, No.5, 781-786, September, 2007
Medium optimization of Rhodococcus erythropolis LSSE8-1 by Taguchi methodology for petroleum biodesulfurization
E-mail:
High production of Rhodococcus erythropolis LSSE8-1 and its application for the treatment of diesel oils was investigated. Culture conditions were optimized by Taguchi orthogonal array experimental design methodology. High cell density cultivation of biocatalyst with pH control and fed-batch feeding strategies was further validated in a fermentor with the optimal factors. Cell concentration of 23.9 g dry cells/L was obtained after 96 h cultivation. The resting cells and direct fermentation suspension were applied for deep desulfurization of hydrodesulfurized diesel oils. It was observed that the sulfur content of the diesel decreased from 248 to 51 μg/g by two consecutive biodesulfurizations. It implied that the biodesulfurization process can be simplified by directly mixing cell cultivation suspension with diesel oil. The biocatalyst developed with the Taguchi method has the potential to be applied to produce ultra-low-sulfur petroleum oils.
  1. Vazquez-Duhalt R, Torres E, Valderrama B, Le Borgne S, Energy Fuels, 16(5), 1239 (2002)
  2. Song CS, Catal. Today, 86(1-4), 211 (2003)
  3. McFarland BL, Curr. Opin. Microbiol., 2, 257 (1999)
  4. Monticello DJ, Curr. Opin. Biotechnol., 11, 540 (2000)
  5. Gupta N, Roychoudhury PK, Deb JK, Appl. Microbiol. Biotechnol., 66(4), 356 (2005)
  6. Linguist L, Pacheco M, Oil Gas J., 97(8), 45 (1999)
  7. Kilbane JJ, Jackowski K, Biotechnol. Bioeng., 40, 1107 (1992)
  8. Ohshiro T, Hirata T, Hashimoto I, Izumi Y, J. Ferment. Bioeng., 82, 610 (1996)
  9. Yan H, Kishimoto M, Omasa T, Katakura Y, Suga K, Okumura K, Yoshikawa O, J. Biosci. Bioeng., 89, 361 (2000)
  10. Furuya T, Kirimura K, Kino K, Usami S, Fems Microbiol. Lett, 204, 129 (2001)
  11. Mingfang L, Jianmin X, Zhongxuan G, Huizhou L, Jiayong C, Korean J. Chem. Eng., 20(4), 702 (2003)
  12. Chang JH, Chang YK, Ryu HW, Chang HN, Fems Microbiol. Lett, 182, 309 (2000)
  13. Gray KA, Pogrebinsky OS, Mrachko GT, Xi L, Monticello DJ, Squires CH, Nat. Biotechnol., 14, 1705 (1996)
  14. del Olmo CH, Santos VE, Alcon A, Garcia-Ochoa F, Biochem. Eng. J., 22, 229 (2005)
  15. Guchhait S, Biswas D, Bhattacharya P, Chowdhury R, Chem. Eng. J., 112(1-3), 145 (2005)
  16. Rashtchi M, Mohebali GH, Akbarnejad MM, Towfighi J, Rasekh B, Keytash A, Biochem. Eng. J., 29, 169 (2006)
  17. Le Borgne S, Quintero R, Fuel Process. Technol., 81, 155 (2003)
  18. Van Hamme JD, Singh A, Ward OP, Microbiol. Mol. Biol. R., 67, 503 (2003)
  19. Prasad KK, Mohan SV, Rao RS, Pati BR, Sarma PN, Biochem. Eng. J., 24, 17 (2005)
  20. Chang MY, Tsai GJ, Houng JY, Enzyme Microb. Technol., 38(3-4), 407 (2006)
  21. Gou ZX, Liu HZ, Luo MF, Li S, Xing JM, Chen JY, Sci. China Ser. B, 45, 521 (2002)
  22. Shan GB, Zhang HY, Xing JM, Guo C, Li WL, Liu HZ, Biochem. Eng. J., 27, 305 (2006)
  23. Yu B, Ma C, Zhou W, Wang Y, Cai X, Tao F, Zhang Q, Tong M, Qu J, Xu P, Fems Microbiol. Lett, 258, 284 (2006)
  24. Wang P, Krawiec S, Appl. Environ. Microbiol., 62, 1670 (1996)
  25. Honda H, Sugiyama H, Saito I, Kobayashi T, J. Ferment. Bioeng., 85, 334 (1998)
  26. Chang JH, Kim YJ, Lee BH, Cho KS, Ryu HW, Chang YK, Chang HN, Biotechnol. Prog., 17, 876 (2001)
  27. Setti L, Lanzarini G, Pifferi PG, Fuel Process. Technol., 52(1), 145 (1997)
  28. Kilbane JJ, Curr. Opin. Biotechnol., 17, 305 (2006)
  29. Yu B, Xu P, Shi Q, Ma CQ, Appl. Environ. Microbiol., 72, 54 (2006)
  30. Konishi M, Kishimoto K, Omasa T, Katakura Y, Shioya S, Ohtake H, J. Biosci. Bioeng., 99, 259 (2005)