Journal of the Korean Industrial and Engineering Chemistry, Vol.18, No.5, 516-521, October, 2007
rac-Me2Si(2-p-tolylindenyl)2ZrCl2 촉매를 이용한 에틸렌/1-옥텐의 공중합 특성
Characteristics of Copolymerization of Ethylene/1-Octene with rac-Me2Si(2-p-tolylindenyl)2ZrCl2 Catalyst
E-mail:
초록
새롭게 합성된 rac-Me2Si(2-p-tolylindenyl)2ZrCl2 촉매와 인디닐 리간드에 치환체가 붙어 있지 않는 상용촉매인 rac-Me2Si(Ind)2ZrCl2 촉매들을 조촉매인 methylaluminoxane (MMAO)를 사용하여 에틸렌/1-옥텐 공중합을 실시하였고, 반응물 내 1-옥텐의 농도를 변화시키며 얻어진 공중합체의 특성을 조사하였다. 촉매활성에 있어서 rac-Me2Si(2-p-tolylindenyl)2ZrCl2 촉매를 이용하여 공중합을 실시한 경우 다리구조를 가진 다른 촉매들과 달리 촉매활성이 감소하여 comonomer의 첨가에 따라 활성이 증가하는 comonomer effect는 발견되지 않았다. 13C NMR 분석에서 공중합체에 삽입된 1-옥텐의 양은 촉매 리간드에 붙은 치환체에 의존함을 보였으며, 2-p-tolyl 치환체가 붙은 촉매로 얻어진 공중합체에서 1-옥텐 삽입량이 더 높음을 보였다. DSC, GPC 분석에서 반응물 내 1-옥텐의 농도가 증가함에 따라 공중합체의 녹는점, 결정성, 분자량이 모두 감소하였으며 rac-Me2Si(Ind)2ZrCl2 촉매보다 rac-Me2Si(2-p-tolylindenyl)2ZrCl2 촉매의 경우 녹는점, 결정성 및 분자량의 감소폭이 더 크게 나타났다.
The copolymerization characteristics of a newly-synthesized catalyst,
rac-Me2Si(2-p-tolylindenyl)2ZrCl2, and its analogue, rac-Me2Si(Ind)2ZrCl2, were examined in the ethylene/1-octene copolymerization while varying the concentration of 1-octene in the reaction mixture. The activity of rac-Me2Si(2-p-tolylindenyl)2ZrCl2 catalyst was decreased with increase of comonomer concentration, which is different from the usual comonomer effect of the metallocene catalysts with a bridge structure. The contents of 1-octene in the copolymer from the catalyst with 2-p-tolyl substituent were higher than those from the catalyst without that substituent. The melting point, crystallinity, and molecular weight decreased with comonomer content which was more apparent for rac-Me2Si(2-p-tolylindenyl)2ZrCl2 catalyst.
Keywords:rac-Me2Si(2-p-tolylindenyl)2ZrCl2 catalyst;metallocene catalyst;ethylene/1-octene copolymerization;comonomer effect;2-p-tolyl substituent
- Huang J, Rempel GL, Prog. Polym. Sci, 20, 459 (1995)
- Brintzinger HH, Fischer D, Mulhaupt R, Rieger B, Waymouth RM, Angew. Chem.-Int. Edit., 34, 1143 (1995)
- Herfert N, Montag P, Fink G, Makromol. Chem., 194, 3167 (1993)
- Koivumaki J, Seppala JV, Macromolecules, 26, 5535 (1993)
- Koivumaki J, Seppala JV, Polymer, 34, 1958 (1993)
- Quijada R, Dupont J, Miranda MSL, Scipioni RB, Galland GB, Macromol. Chem. Phys., 196, 3991 (1995)
- Reybuck SE, Meyer A, Waymouth RM, Macromolecules, 35(3), 637 (2002)
- Schneider MJ, Suhm J, Mulhaupt R, Prosenc MH, Brintzinger HH, Macromolecules, 30(11), 3164 (1997)
- Suhm J, Schneider MJ, Mulhaupt M, J. Mol. Catal. A-Chem., 128, 215 (1998)
- Yoon SC, Park JW, Jung HS, Song HJ, Park JT, Woo SI, J. Org. Chem., 559, 149 (1998)
- Yoon SC, Han TK, Woo BW, Song HJ, Woo SI, Park JT, J. Org. Chem., 534, 81 (1997)
- Randall JC, S-Rev JM, Macromol. Chem. Phys., C29, 201 (1989)
- Marques MDV, Conte A, De Resende FC, Chaves EG, J. Appl. Polym. Sci., 82(3), 724 (2001)
- Soga K, Yanagihara H, Lee DH, Makromol. Chem., 190, 995 (1989)
- Przybyla C, Tesche B, Fink G, Macromol. Rapid Commun., 20, 328 (1999)
- Fan ZQ, Yasin T, Feng LX, J. Polym. Sci. A: Polym. Chem., 38(23), 4299 (2000)
- Miri M, Hetzer D, Miles A, Pecak M, Riscili B, in: W. Kaminsky (Ed.), Metalorganic Catalysts for Synthesis and Polymerisation, Springer-Verlag, Berlin, p. 509 (1999)
- Kim I, Kim SY, Choi CS, Korean Polym. J., 7, 162 (1999)
- Chien JCW, Nozaki T, J. Polym. Sci. A: Polym. Chem., 31, 227 (1993)