화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.45, No.5, 460-465, October, 2007
엔도설판류의 광 및 초음파분해
Photo- and Sonic Degradation of Endosulfans(? ? and sulfate) in Aqueous Solution
E-mail:
초록
엔도설판류(α, β, sulfate)를 UV 및 초음파에너지를 조사하여 분해하였다. 물질의 분해과정은 가스크로마토그래프(GC)와 총유기탄소(TOC)를 분석하여 검토되었다. UV 원으로서 low pressure mercury multilamp(8Wx2)와 초음파발생기를 이용하였으며, 초기농도는 10 mg/L로 하였다. 단일성분에서의 실험결과 엔도설판류(α, β, sulfate)의 UV 광분해도는 순서대로 48.2%, 50.0%, 76.5%였으며, 초음파를 이용한 분해에서는 각각 66.9%, 55.8%, 72.7%였다. 3성분 혼합용액에서는 단일성분용액의 분해효율과 달리 엔도설판-sulfate의 분해속도가 급감하여 가장 낮았고 엔도설판 -α, β들은 두드러진 차이를 보이지 않았다. 혼합용액에서 엔도설판-sulfate의 분해속도 감소로부터 엔도설판-α, -β와 엔도설판-sulfate 사이의 낮은 평형상수값을 갖는 가역적 반응을 가정할 수 있었다. TOC 분석자료는 엔도설판류의 무기질화가 약 20%~40% 수준으로 진행되었음을 보여주며, 동시에 두 고도처리법이 라디칼분해반응을 유도하면서 상당한 분율의 중간산물을 생성함을 추정할 수 있었다. 또한 엔도설판류의 분해는 유기물 및 TOC 분석자료에 의거하면 모두 겉보기 1차 속도식과 잘 부합되었다.
Endosulfan-α endosulfan-β and endosulfan-sulfate, which are classified as pesticides, were degraded by use of UV energy and ultrasonic irradiation. The degradation residuals were analysed by gas chromatography with an electron capture detector and TOC (total oragnic carbon) analysis. The reactions were conducted in a quartz annular reactor equipped with a low pressure mercury multilamp (8Wx2) and a sonic generator. All the aqueous solutions were concentrated as 10 mg/L initially. Endosulfans were degraded each to result in 48.2% (α, 50.0% (β and 76.5% (sulfate) of removal efficiency by UV energy, and 66.9% (α, 55.8% (β and 72.7% (sulfate) by ultrasonic irradiation, respectively. In contrast to the results of the single-component solutions, degradation of the endosulfan-sulfate was greatly suppressed to result in the lowest degradation rate and removal efficiency in the three-component solutions. This finding suggests that there should be a reversible reaction with a substantially low equilibrium constant between endosulfan-αor -β and -sulfate in the coexistence of the three endosulfans. TOC data showed the endosulfans were decomposed by 20%~40% toward complete mineralization, producing a quantity of intermediates induced by the radical reactions. We found that all the decay reactions considered in this study nicely fell into pseudo first-order rate.
  1. Jeon MH, Choi SI, J. KOSSGE, 6(2), 39 (2001)
  2. Kim JH, J. Korean Ind. Eng. Chem., 10(1), 30 (1999)
  3. Kam SK, Kim JY, Ju CS, Lee MG, J. Environ. Sci., 12(7), 775 (2003)
  4. Miller J, Olejnik D, Water Res., 35(1), 233 (2001)
  5. Psillakis E, Goula G, Kalogerakis N, Mantzavinos D, J. Hazard. Mater., B108(2), 95 (2004)
  6. Harada K, Hisanaga T, Tanaka K, Water Res., 24(11), 1415 (1990)
  7. Legrini O, Oliveros E, Braun AM, Chem. Rev., 93(2), 671 (1993)
  8. Choy WK, Chu W, Chemospere, 44(2), 211 (2001)
  9. Bunce NJ, Diodato GD, Safe SH, Chemosphere, 24(4), 433 (1992)
  10. Addision J, Cote KA, Chemosphere, 24(2), 181 (1992)
  11. Min BC, Kim JH, Kim BK, J. Korean Ind. Eng. Chem., 8(3), 502 (1997)
  12. Kawaguchi H, Chemosphere, 24(12), 1707 (1992)
  13. Little C, Hepher MJ, El-Sharif M, Ultrasonics, 40(8), 667 (2002)
  14. Kwon SH, Kim JH, Cho D, J. Environ. Sci., 15(7), 669 (2006)
  15. Kim JH, Lee MH, J. KSSE, 27(2), 224 (2005)
  16. Hong SY, Kim SC, Yoon YS, Park SK, Kim KH, Hwang SR, Anal. Sci. Technol., 19(1), 86 (2006)
  17. Kang JW, Lee KH, Lee MJ, J. KSSE, 19(1), 111 (1997)
  18. Mason TJ, Royal Soc. Chem., 1 (1990)
  19. Al-Ekabi H, Butters B, Delany D, Photocatalytic Purification and Treatment of Water and Air, D.F. Ollis and H. Al-Ekabi(Ed.,), Elsevier Science Publishers, B.V., 321 (1993)
  20. Yue PL, Legrini O, AlChE Natl. Meeting, San Francisco (1989)