화학공학소재연구정보센터
Energy Conversion and Management, Vol.48, No.5, 1579-1589, 2007
Direct simulation of natural convection in square porous enclosure
In this article, natural convection in a square porous enclosure is simulated by a direct numerical method. The solution method is based on a random distribution of solid blocks, which resembles the porous media within the cavity. The Navier-Stokes equations are solved directly in the fluid region without the assumption of volume averaging. The no-slip condition is applied on the surface of any solid particle, and the energy transport equation is solved separately for the solid phase and fluid flow. The local and average Nusselt numbers are presented for steady state for two different cases of thermal boundary conditions of the cavity walls. An oscillatory solution is observed for the local Nu number on the surface of the enclosure, and the critical Ra numbers are found in which natural convection flow is started within the cavity. (C) 2006 Elsevier Ltd. All rights reserved.